Survey: Vega and Vega-Lite

Group 4: Patrick Draxler, Nikolina Jekic, Lukas Plechinger, and Josef Suschnigg

Course: Information Visualization
Summer Term 2019
Graz University of Technology

27 Jan 2019

Abstract

Vega and Vega-Lite are declarative, data-driven tools for creating powerful interactive data
visualizations in the browser. Vega-Lite is built on top of Vega, a visualization grammar
built using D3. Although Vega and D3 provide great flexibility for customized visualization
designs, there are some limitations. With Vega and D3, a simple chart requires a lot of
lines of code and specification for low-level components. By contrast, Vega-Lite inspired
by Wilkinson’s Grammar of Graphics, Wickham’s ggplot2 and Tableau, is a higher-level
language that simplifies the creation of common charts. In this survey, we provide an
overview of Vega and Vega-Lite and evaluation of the tools through different examples.

© Copyright 2019 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents ii
List of Figures iii
List of Listings v
1 Declarative Visualization - Grammar of Graphics 1
1.1 Grammar of Graphics L 1

1.2 Fundamental components of the Grammar of Graphics 1
121 Data. e e e 1

1.2.2 Aesthetics 1

1.2.3 Scale e 1

1.2.4 Geometry/Geometricobjects 2

1.2.5 Facets e e e 2

1.2.6 Coordinate System i e e e e e 2

1.277 Themes e e e e e 2

2 Overview of Vega and Vega-Lite 3
2.1 WhatisVega? e 3
2.2 Whatis Vega-Lite? e 3
23 D3s . . 3
24 Howdothey work? e 5
241 Parsero e e e 5

242 VIEW . ..o e e 6

243 Renderer e e e e 7

2.5 Technology Stack Summary 7

3 Vega 8
3.1 BasicElementsof Vega 8
3.2 BasicBarChartExample 8
3.2.1 \Visualizationsizeanddataset, 9

3.2.2 Connect Data with Visualization Axes 9

3.23 Visualizethe Bars 10

324 Interaction e e e e e 10

3.3 Advanced Visualization Horizon Graph Example 11

4 Vega-Lite

4.1 Built-in Visualization Types
4.2 Basic Bar Chart Example in Vega-Lite
4.3 Differences between Vega and Vega-Lite?

Creation of a Custom Visualization using Vega

5.1 BulletGraph.
5.2 Creation of the Specification

Tools and Bindings

6.1 Tools for Authoring

6.1.1 VegaLiveEditor

6.1.2 VegaVoyager2

6.13 VegaDesktop

6.2 Bindings for Programming Languages
Bibliography

ii

12
12
13
16

17
17
18

22
22
22
23
24
25

27

List of Figures

1.1

2.1
2.2
23

3.1
3.2
33

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4

The fundamental components of the Grammar of Graphics. Redrawn from [Sarkar 2018] 2

Workflow of Vega and Vega-Lite Data Visualization 5
Example radial plot dataflow graph created by [Dataflow Vis 2019]. 6
Schematic technical comparison of technologies used in regards with its possibilities and

complexity e e e 7
The VegaBarChart e 9
Horizon Graph with2 layers 11
Horizon Graph with4 layers 11
The Vega-Lite DemoBarChart 14
The Vega Demo Bar Chart 16
Bullet graph example 17
Vega bullet graph custom visualization, 21
The Vega Edltor Web—app [Screenshot taken by the authors of this survey] « « « « « « « « « « o o o 0 4 4 . . . 22
Data viewer Of the Vega editor [Screenshot taken by the authors of this survey]l « « « « ¢ ¢ o o & o & 4 4 4 4 0 . 23
SCI‘eenShOt Of Vega Voyager 2 [Screenshot taken by the authors of this survey] o o 24
SCI‘eenShOt Of Vega—DeSktOp [Screenshot taken by the authors of this survey] . . « « « + « « « o o o 0 24

iii

iv

List of Listings

2.1
2.2
23

3.1
32
33
34

4.1

5.1
5.2
53
54

D3jsline plotexample 3
Vega and Vega-Lite schema declaration 5
Vega SQL datasourceexample 6
Vega JSON data sourceexample it 9
Vega connect data source to visualization 9
Draw rectangles forbarchart 10
Add interactions to Vega visualization 10
Vega-Lite Bar Chart Example. 13
Vega metadata specification. L L L 18
Vega data definition 18
Link data to two-dimensional scales L. 18
Add marks to custom visualization Lo Lo L 19

vi

Chapter 1

Declarative Visualization - Grammar of Graph-
ics

1.1 Grammar of Graphics

The Grammar of Graphics has been developed by Leland Wilkinson [Wilkinson 2005]. It decomposes
visualizations into their fundamental elements and describes rules how those elements are connected to
each other, very similar to the grammar of a spoken language.

One of the most popular implementations of the Grammar of Graphics (GoG) is the visualization
package ggplot2 ggplot2 [2019] for the programming language R [R-Project 2019]. But also the tools
Vega and Vega-Lite which are described in this survey are using the principles of the GoG to declare
visualization.

The goal of the development of the GoG was to provide an unified way to describe visualizations
without the need to name the actual name of the visualization - instead of drawing a "Bar-Chart" you
describe the elements of a Bar-Chart, for example, the bars like "blue rectangles for each value in the
dataset A with a length proportional to the value of A". That is the reason why this is called "Declarative
Visualization" - you declare which elements the visualization consists of.

1.2 Fundamental components of the Grammar of Graphics

The fundamental components can be described as a pyramid as seen in Figure 1.1.

1.2.1 Data

The most important thing is the data to plot. It might be necessary to preprocess the data to be in a well
formatted state.

1.2.2 Aesthetics

The data is mapped to aesthetics which are the axes and the dimension of the plot itself.

1.2.3 Scale

After defining the aesthetics, the scale determines the size of those. Minimum or maximum values can
be defined as well as mathematical scaling like a logarithmic or exponential scale.

2 1 Declarative Visualization - Grammar of Graphics

Figure 1.1: The fundamental components of the Grammar of Graphics. Redrawn from [Sarkar 2018]

Themes Coloring, non-data things

Coordinate System Which system - Cartesian, Polar,...

Facets One aspect which can be drawn multiple times

. . Helpers to help interpretations: Mean, tendency,
Statistics spread, confidence intervals,...

Geometric objects Shape (Box, Circle, Line,...)

Sca|e Which scale? Min, Max,...

. Map the data to visual properties,
Aesthetics dimensions prop

Data The dataset

1.2.4 Geometry/Geometric objects

These are the elements which are mapped to the actual values in the data. This can be rectangles or boxes,
for example, to draw the bars for a bar chart or points of a scatterplot.

1.2.5 Facets

If the same visualization should be drawn multiple times, for example the same temperature line-chart
for every month, there is the possibility to define the chart as a facet and draw this facet multiple times.

1.2.6 Coordinate system

Definition of the coordinate system like polar coordinates or cartesian coordinates.

1.2.7 Themes

The look of the visualization. This is optional and not a real part of the GoG. Also there could be
interactive elements like tooltips which are in this layer.

Chapter 2
Overview of Vega and Vega-Lite

2.1 What is Vega?

"Vega is a visualization grammar, a declarative language for creating, saving, and sharing interactive
visualization designs. With Vega, you can describe the visual appearance and interactive behavior of
a visualization in a JSON format, and generate web-based views using Canvas or SVG." [Vega — A
Visualization Grammar 2019]. Therefore, Vega is an implementation of the declarative visualization
concept grammar of graphics, as described in chapter 1. One of the most famous visualization libraries,
also implementing those concepts is ggplot [ggplot2 2019] for the R programming language [R-Project
2019]. Hence, Vega shows lots of similarities in comparison to ggplot, whereas Vega is based on web
technologies and mainly used in web environments.. Vega uses the powerful and complex JavaScript
visualization library D3.js [Bostock et al. 2011] as a basis for visualization and user interaction. A more
detailed explanation of Vega is given in chapter 3.

2.2 What is Vega-Lite?

Vega-Lite is setup on Vega and is able to use predefined Vega visualizations. Its main advantage is the low
complexity on how to create visualization, because they are based on those predefinitions. Customization
in Vega-Lite visualizations can be added like in a common Vega documents and predefinitions can also
be overridden. Vega-Lite is further described in chapter 4.

2.3 D3.s

D3.js is a highly complex, but powerful web-based visualization library, whereas powerful means, that
almost no limits, at least for 2D visualizations, are given. As a disadvantage it is very complex and one
need to programmatically take care of many basic visualization tasks. As an example, for a simple line
plot visualization those abstract tasks may be: (1) connect data points by a line (2) draw and set scales (3)
set borders (4) highlight data points by drawing circles. Also, the visualization is not proper encapsulated
from the data, and is strongly connected on CSS definitions. Therefore, D3.js is more of a visualization
framework, then a ready to use visualization library. Here is an example [D3 v5 Line Chart 2019] of a
simple line plot, which is a one-liner in many other visualization libraries:

<!-- Load in the d3 library -->
<script src="https://d3js.org/d3.v5.min.js"></script>
<script>

// 2. Use the margin convention practice

var margin = {top: 50, right: 50, bottom: 50, left: 50}

, width = window.innerWidth - margin.left - margin.right // Use the
window’s width

2 Overview of Vega and Vega-Lite

, height = window.innerHeight - margin.top - margin.bottom; // Use
the window’s height

// The number of datapoints
var n = 21;

// 5. X scale will use the index of our data
var xScale = d3.scalelLinear()

.domain([®, n-1]) // input

.range ([0, width]); // output

// 6. Y scale will use the randomly generate number
var yScale = d3.scalelLinear()

.domain ([0, 1]) // input

.range ([height, 0]); // output

// 7. d3’s line generator
var line = d3.1line()
.X(function(d, i) { return =xScale(i); }) // set the x values for the
line generator
.y(function(d) { return yScale(d.y); }) // set the y values for the
line generator
.curve (d3.curveMonotoneX) // apply smoothing to the line

// 8. An array of objects of length N. Each object has key -> value
pair, the key being "y" and the value is a random number
var dataset = d3.range(n).map(function(d) { return {"y": d3.

randomUniform(1) () } })

// 1. Add the SVG to the page and employ #2

var svg = d3.select("body").append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top +

")

// 3. Call the x axis in a group tag
svg.append('"g")

.attr("class", "x axis")

.attr("transform"”", "translate(®," + height + ")")

.call(d3.axisBottom(xScale)); // Create an axis component with d3.
axisBottom

// 4. Call the y axis in a group tag

svg.append('"g")

.attr("class", "y axis")

.call(d3.axisLeft(yScale)); // Create an axis component with d3.
axisLeft

"

// 9. Append the path, bind the data, and call the line generator
svg.append("path")

.datum(dataset) // 10. Binds data to the line

.attr("class", "line") // Assign a class for styling

.attr("d", line); // 11. Calls the line generator

// 12. Appends a circle for each datapoint
svg.selectAll (".dot")

How do they work? 5

.data(dataset)
.enter () .append("circle") // Uses the enter().append() method
.attr("class", "dot") // Assign a class for styling

.attr("cx", function(d, i) { return =xScale(i) })

.attr("cy", function(d) { return yScale(d.y) 1})

.attr("r", 5)

.on("mouseover", function(a, b, c) {
console.log(a)

this.attr(’class’, ’focus’)
b
.on("mouseout", function() { })
</script>

Listing 2.1: D3.js line plot example

2.4 How do they work?

Figure 2.1: Workflow of Vega and Vega-Lite Data Visualization

Dataflow Dataflow
Parser > View > Renderer
e Parse JSON e Modify Dataflow e SVG
e Vega Lite: Compile to o Interaction e (Canvas
Vega Specification o Transformation e WebGL
e (Create “Dataflow” o Localization °
e Link JSON declaration o

with data source

As mentioned above, Vega-Lite is set up on Vega, whereas Vega is set up on D3.js. An illustration on
how a visualization is created, is given in Figure 2.1. In general the workflow consists of three subsequent
components: (1) Parser, (2) Viewer and (3) Renderer. The components are explained in the following
subsections:

2.4.1 Parser

The basis of any Vega and Vega-Lite File are JSON files, caused by Vega’s focus on web and browser
technologies. Therefore at first the JSON file needs to be parsed based on the "schema" variable of the
JSON’s root object. It can be either a Vega or a Vega-Lite definition:

"$schema": "https://vega.github.io/schema/vega/v5.json"
"$schema": "https://vega.github.io/schema/vega-lite/v3.json",

Listing 2.2: Vega and Vega-Lite schema declaration

Since Vega-Lite is a simplification/predefinition of Vega, for Vega-Lite files the first step is to compile it
to a valid Vega specification. When a Vega specification is available, the parser creates a data-flow graph,
which consists of all computations needed to map data to visual elements, like circles, axes, rectangles,
but also user interactions on a higher abstract level. This dataflow will in the next step compiled to
JavaScript code. Another task of the parser is to connect the data source to the JSON declaration. Vega

6 2 Overview of Vega and Vega-Lite

can handle data a JSON format easily, however there are other ways to pass data to the Vega visualization.
As an example for an alternative data source, a select statement to access data from a SQL databases can
be applied by Vega [Vega SOL 2019]:

"data": [
{
"name": "tweets",
"sql": "SELECT goog_x as X, goog_y as y, tweets_nov_feb.rowid FROM
tweets_nov_feb"
}
Listing 2.3: Vega SQL data source example
2.4.2 View

After the Vega file has been parsed, the view can be created from dataflow descriptions. The view is
interactive, therefore hover and click events are also added to the visualization model. Vega dataflow
can be highly dynamic, so creating the view can be quite complex. To visualize the creation of views
by dataflows an open source tool "Dataflow Vis" is accessible on GitHub [Dataflow Vis 2019]. It has an
online Vega editor, which dataflow graph can be dynamically visualized and explored. An example for a
radial plot is given in Figure 2.2.

Figure 2.2: Example radial plot dataflow graph created by [Dataflow Vis 2019].

Data 2536

Pie 2535
fields: data

Data 2537

Group Builder 2548

Node 2544

/

Arc Builder 2552
data: table

7

|

Text Builder 2555
data: table

Node 2546

Collector 2547

Group Bounder 2550

Node 2542

Technology Stack Summary 7

2.4.3 Renderer

The interactive Vega visualization can be either rendered as SVG, Canvas and WebGL, depending on the
users need.

2.5 Technology Stack Summary

Figure 2.3: Schematic technical comparison of technologies used in regards with its possibilities and
complexity

Vega Lite

Ease of use

Possibilities

To summarize this chapter Vegas building blocks are visualized in Figure 2.3. It is set up on D3 with
the highest possibilities, but on the other hand very high complexity in usage. Vega therefore is easier to
use with a little less possibilities, since the dataflow creation and the complex parts of the visualization,
especially when interaction are taken into account, is handled by the Vega library and the declarative
grammar of graphics language. As the easiest to use technology Vega-Lite has the fewest possibilities. In
general, Vega-Lite uses complete and pre defined Vega declarations, which can be used with or without
further user customizations.

Chapter 3
Vega

3.1 Basic Elements of Vega

Vega is a visualization grammar that provides basic building block for wide range of visualization design.
Example of Vega specification is presented in listings of the Chapter 3. Components of Vega are :

¢ Data
¢ Visualization size (size of canvas, uses SVG viewBox)

¢ Scales

— Map data values to visuals (color, pixels, etc.)

e Marks

— Enter, exit, hover and update events
— Basic visual elements (rect, line, etc.)

» Signals (Interactivity)

— Dynamic variables (for e.g. tooltips)
— Parameterize visualization
— Update due to external Events (Mouse, Keyboard, API)

A Vega specification defines an interactive visualization in a JSON format. Code is readable for user
and not complex like in other languages e.g. D3. In Vega specification, it is possible to load data from the
web, derived from a previously defined data set or to embed values directly into specifications. Definition
for scales function allows us to map those data values to visual properties like color, position, size. Axes
visualize scales using ticks and labels to help viewers interpret a chart. Marks are the main elements of
visualization, determining which kind of marks (rect, area, line, symbol..) will be used. Along side with
familiar visual encoding building block Vega introduces reactive ones to do interaction design. These
events feed signals, which are dynamic variables. Their values automatically update visualization.

3.2 Basic Bar Chart Example

The creation of the visualization is similar to SVG, but looking at the data definition, it gets clear, that
the data is independent from the visualization.

Basic Bar Chart Example 9

Figure 3.1: The Vega Bar Chart

100+

3.2.1 Visualization size and data set

{

"$schema": "https://vega.github.io/schema/vega/v5.json",

"width": 400,

"height": 200,

"padding": 5,

"data": [

{
"name": "table",
"values": [
{"year": "2018", "rate": 1249},
{"year": "2017", "rate": 1265},
{"year": "2016", "rate": 1152},
{"year": "2015", "rate": 1068},
{"year": "2014", "rate": 1200},
{"year": "2013", "rate": 1221},
{"year": "2012", "rate": 1287}
1

}

1,

Listing 3.1: Vega JSON data source example

3.2.2 Connect Data with Visualization Axes

"scales": [

{
"name": "xscale",
Iltypell: llbandll,
"doma in": {"data": "table", "field": "year"},

"range": "width",

10

"padding": 0.05,
"round": true

1,

{
"name": "yscale",
"domain": {"data":
"nice": true,
"range": "height"

}

1,

"axes": [

{ "orient": "bottom'

{ "orient": "left",

1,

"table", "field": "rate"},
', "scale": "xscale" 1},
"scale": "yscale" }

Listing 3.2: Vega connect data source to visualization

3.2.3 Visualize the Bars

"marks": [
{
"type": "rect",
"from": {"data":"table"},
"encode": {
"enter": {
"x": {"scale": "xscale", "field": "year"},
"width": {"scale": "xscale", "band": 1},
"y": {"scale": "yscale", "field": "rate"},
"y2": {"scale": "yscale", "value": 0}

1,
"update": {

"fill": {"value": "steelblue"}

3,

"hover": {

"fill": {"value": "red"}

Listing 3.3: Draw rectangles for bar chart

3.2.4 Interaction

3 Vega

Interactions can also be defined by Vega. As an example a mouseover tooltip visualization is given:

"signals": [
{
"name": "tooltip",
"value": {},
"on": [
{"events": "rect:mouseover", "update": "datum"},
{"events": "rect:mouseout", "update": "{}"}
]
}
1,
{
"type": "text",

"encode": {

Advanced Visualization Horizon Graph Example 11

"enter": {

"align": {"value": "center"},
"baseline": {"value": "bottom"},
"fill": {"value": "#333"}
3,
"update": {
"x": {"scale": "xscale", "signal": "tooltip.year", "band":
0.5},
"y": {"scale": "yscale", "signal": "tooltip.rate", "offset":
-2},
"text": {"signal": "tooltip.rate"},
"fillOpacity": [
{"test": "isNaN(tooltip.rate)", "value": 0},
{"value": 1}
]
}
}
}
]

Listing 3.4: Add interactions to Vega visualization

3.3 Advanced Visualization Horizon Graph Example

Vega supports declarative interaction using a reactive model. Horizon graphs present time-series data
in compact space, by dividing an area chart into layers By clicking, user can change number of layers.
Changing input events, number of layers, Vega will automatically update visualization. Even though,
new selection will change the chart size, the spatial resolution of the area chart will stay constant.

Figure 3.2: Horizon Graph with 2 layers

-
ka
[#%]
o
[55]
=)
=
o
[{e]
—a
=]
.
—a
a
s
[o%}
—h
E=Y

15 16 17 18 19 20

Figure 3.3: Horizon Graph with 4 layers

18 19 20

Chapter 4
Vega-Lite

Low-level grammars such as Protovis, D3, and Vega are useful for explanatory data visualization or as
a basis for customized analysis tools. For research visualization, higher-level grammar, such as ggplot2,
and grammatically based systems such as Tableau (gender Polaris) are usually preferred by users. They
enable users to quickly visualize partially given specifications for visualization as they apply default
values to solving low-level details to produce visualizations. However, existing high-level languages
provide limited support for interactivity. An analyst can enable a predefined set of common techniques
such as linking, panning, zooming, etc. For custom direct manipulation, interaction needs a callback for
event handling. Recognizing that callbacks can be difficult and requires complex static analysis.

Interaction techniques can be specified in Vega using reactive signals. While these improvements
facilitate the programming and targeting the desired interactive visualization, they remain at a low-level.
A detailed specification disturbs quick writing and interferes with a systematic exploration of alternative
designs.

Vega-Lite is a high-level grammar for interactive graphics that enables fast specification of interactive
data visualizations. Vega-Lite combines a traditional grammar of graphics, providing visual encoding
rules and a composition algebra for layered and multi-view displays.

In the next section, we will evaluate Vega-Lite with different examples that demonstrate a specification
of both customized interaction methods and common techniques such as panning, zooming, and linked
selection.

4.1 Built-in Visualization Types

Vega-Lite provides functionality for quickly creating common statistical graphics. The following types
of graphics are build in Vega-Lite:

* Scatter & Strip Plots

* Line Charts

* Area Charts & Streamgraphs
* Table-based Plots

* Composite Plots

* Box Plots

* Layering

e Multi view Plots

12

Basic Bar Chart Example in Vega-Lite 13

* Maps (Geographic Displays)

* Interactivity
Additional Plots only available in Vega:

* Tree diagrams

» Network diagrams
 Parallel Coordinates
* Word Cloud

* Timeline

e Beeswarm

4.2 Basic Bar Chart Example in Vega-Lite

Vega-Lite specifications are significantly shorter(about 1/10th) than Vega specifications. When drawing
the same dataset with both Vega and Vega-Lite, one can see a huge difference in the size of the listing.
Example Bar Chart in Vega-Lite with 16 lines.

{
"$schema": "https://vega.github.io/schema/vega-lite/v3.json",
"description": "A simple bar chart with embedded data.",
"data": {
"values": [
{"a": "A","b": 283}, {"a": "B","b": 553}, {"a": "C","b": 43},
{"a": "D","b": 913}, {"a": "E","b": 81}, {"a": "F","b": 53},
{"a": "G","b": 19}, {"a": "H","b": 87}, {"a": "I","b": 52}
]
} L
"mark": "bar",
"encoding": {
"x": {"field": "a", "type": "ordinal"},
"y": {"field": "b", "type": "quantitative"}
}
}

Listing 4.1: Vega-Lite Bar Chart Example

14 4 Vega-Lite

Figure 4.1: The Vega-Lite Demo Bar Chart
100 -

80 -

60 -

40 -

20

0

< 0 O o W uw ¢ T T
a

The same dataset visualized in Vega takes 95 lines. In Vega, you have to construct axis and legends
and you have to decide how to map the data to visual properties. When using Vega-Lite we don’t need to
worry about low-level details such as of axes, legends, and scales.

{

"$schema": "https://vega.github.io/schema/vega/v5.json",

"width": 400,

"height": 200,

"padding": 5,

"data": [

{
"name": "table",
"values": [
{"category": "A", "amount": 28},
{"category": "B", "amount": 55},
{"category": "C", "amount": 43},
{"category": "D", "amount": 91},
{"category": "E", "amount": 81},
{"category": "F", "amount": 53},
{"category": "G", "amount": 19},
{"category": "H", "amount": 87}
]

}

1,

"signals": [

{

"name": "tooltip",

Basic Bar Chart Example in Vega-Lite

15

"value": {1},
"on": [
{"events": "rect:mouseover", "update": "datum"},
{"events": "rect:mouseout", "update": "{}"}
]
}
1,
"scales": [
{
"name": "xscale",
"type": "band",
"domain": {"data": "table", "field": "category"},
"range": "width",
"padding": 0.05,
"round": true
1,
{
"name": "yscale",
"domain": {"data": "table", "field": "amount"},
"nice": true,
"range": "height"
}
1,
"axes": [
{ "orient": "bottom", "scale": "xscale" 1},
{ "orient": "left", "scale": "yscale" }
1,
"marks": [
{
"type": "rect",
"from": {"data":"table"},
"encode": {
"enter": {
"x": {"scale": "xscale", "field": "category"},
"width": {"scale": "xscale", "band": 1},
"y": {"scale": "yscale", "field": "amount"},
"y2": {"scale": "yscale", "value": 0}
1,
"update": {
"£fill": {"value": "steelblue"}
1,
"hover": {
"fill": {"value": "red"}
}
}
1,
{
"type": "text",
"encode": {
"enter": {
"align": {"value": "center"},
"baseline": {"value": "bottom"},
"£fill": {"value": "#333"}
1,

"update": {

16 4 Vega-Lite

"x": {"scale": "xscale", "signal": "tooltip.category", "band
": 0.5},
"y": {"scale": "yscale", "signal": "tooltip.amount", "offset
"io-2%,
"text": {"signal": "tooltip.amount"},
"fillOpacity": [
{"test": "datum === tooltip", "value": 0},
{"value": 1}
1
}
}
}
1

Figure 4.2: The Vega Demo Bar Chart

100

4.3 Differences between Vega and Vega-Lite?

Vega-Lite is a lightweight version built on top of the Vega specification (subset of Vega). It supports
existing chart types(bar chart, line chart, area chart, scatter plot, heatmap, trellis plots, ...) and functionality
for data transformations (sorting, aggregation, faceting) as well as interactivity. Its goal is to offer a fast
and easy functionality for data analysis. A portable JSON format is used, which is then compiled into
the Vega language.Some visualizations (trees, graphs, word cloud, custom chart types...) and interaction
techniques which Vega provides, can not be expressed in Vega-Lite.

Chapter 5

Creation of a Custom Visualization using
Vega

In order to test the limits of Vega, we wanted to create a custom chart type, which is not simply available
within Vega. We also wanted to see how much effort it takes to create a specification from scratch. For
our test we choose to create a bullet graph, which is described in the next section.

5.1 Bullet Graph

This section is based on the design specification from Stephen Few. The bullet graph was designed
by Stephen Few. It was originally designed for dashboards, because it is capable of displaying much
information within a small space. An example of a bullet graph is shown in the figure below and the
single components are describe above.

Figure 5.1: Bullet graph example

Earnings 2018
(€ in thousands)

The bullet graph consists of three main elements which are mandatory. The first element is the text
label, which shall describe the data which is displayed. The second one is the quantitative scale. It
consists of text marks and labels which are equally distributed along the graph. Normally the scale starts
at zero, but it is also possible to start with another value, if starting at zero is not appropriate. The third
element, the featured measure, is the actual data. It is normally visualized with a centered horizontal bar,
but it could also be marked with a sign.

In addition to the mandatory elements, there are two additional which are commonly used. The first is
the comparative measure. This element is a vertical line, which should be less dominant than the featured
measure. Its purpose is to display a target value. The second additional element are the qualitative ranges.
These ranges visualize the quality of the data, encoded by different shades of a color. For example the first
65 percent are dark and symbolizes bad, the next 20 percent are a bit lighter and stand for an acceptable
value and the last 15 percent are light represents good.

17

18 5 Creation of a Custom Visualization using Vega

5.2 Creation of the Specification

The following specification is based on the official specification of Vega.The whole specification was
done by scratch and the first step was to setup the schema, size and position of the visualization. The
schema is set by simply referencing the used Vega schema. The height, width and padding are then set
with the desired size in pixel. Vega also defines a auto-sizing option, but unfortunately we could not
make it work. The result of the first part of the specification is shown below.

"$schema": "https://vega.github.io/schema/vega/v5.json",
"width": 1000,

"height": 500,

"padding": 5

Listing 5.1: Vega metadata specification

The second step was to define the data set. Our example data set looks like the following:

"data":[

{
"name": "table",
"values": [
{"company": "A", "amount": 28, "target": 30},
{"company": "B", "amount": 55, "target": 45},
{"company": "C", "amount": 43, "target": 20},
{"company": "D", "amount": 91, "target": 120}
]

}

]

Listing 5.2: Vega data definition

The data set is imaginary and shall represent companies with their names, the current amount they earned
and the target amount they want to earn. For you example we decided to hard-code the data within the
specification, because it is just a small one, but it would be possible to link to data from other sources.
Afterwards the scales and axes were defined like this:

"scales": [
{
"name": "yscale",
"type": "band",
"domain": {"data": "table", "field": "company"},
"range": "height",
"padding": 0.5
1,
{
"name": "xscale",
"domain": {"data": "table", "field": "target"},
"domainMax":140,
"range": "width"
}
1,
"axes": [
{ "orient": "left", "scale": "yscale", "domain":false, "title":"

Company "},

Creation of the Specification 19

{ "orient": "bottom", "scale": "xscale", "title":"Money earned"}

1
Listing 5.3: Link data to two-dimensional scales

First, the scales get a name and then they are mapped to a data field with the "domain" field. The "yscale"
is set to be of type band and then a padding is set, such that the bars have enough space in-between. In
the "xscale" we also set the "domainMax" to be 140. This is a workaround for the qualitative scales and is
used such that all bars in the bullet graph have the same length, even if they have a small value. After the
scales are defined, the axes are mapped to them. In this case we have two axes, where the y-axes shows
the companies and the x-axes shows the current money earned. In the y-scale, the domain field is set to
false in order to hide the line which indicates the axes. The last step for the bullet graph specification was
to add so called marks:

"marks": [
{
"type": "rect",
"from": {"data":"table"},
"encode": {
"enter": {
"y": {"scale": "yscale", "field": "company"},
"height":{"scale":"yscale", "band": true},
"width": {"scale":"xscale","value": 140},
"fill": {"value":"#A9CCE3"}
}
}
1,
{
"type": "rect",
"from": {"data":"table"},
"encode": {
"enter": {
"y": {"scale": "yscale", "field": "company"},
"height":{"scale":"yscale", "band": true},
"width":{"scale":"xscale", "field": "target", "mult":1},
"£fill": {"value":"#2471A3"}
}
}
1,
{
"type": "rect",
"from": {"data":"table"},
"encode": {
"enter": {
"y": {"scale": "yscale", "field": "company"},
"height":{"scale":"yscale", "band": true},
"width":{"scale":"xscale", "field": "target", "mult":0.8},
"£fill": {"value":"#154360"}
}
}
1,
{
"type": "rect",
"from": {"data":"table"},
"encode": {
"enter": {

"y": {"scale": "yscale", "field": "company", "offset":15},

20 5 Creation of a Custom Visualization using Vega

"height":{"scale":"yscale", "band":true,"offset":-30},
"width":{"scale":"xscale", "field":"amount"},
"£fill": {"value": "black"}
}
}
1,
{
"type": "rect",
"from": {"data":"table"},
"encode": {
"enter": {
"y": {"scale": "yscale", "field": "company", "offset":3},
"x": {"scale": "xscale", "field":"target","offset":-2.5},
"height":{"scale":"yscale", "band":true,"offset":-6},
"width":{"value": 5 },
"fill": {"value": "black"}
}
}
}
]

Listing 5.4: Add marks to custom visualization

The marks are used to visualize the actual data, but it is also possible to draw for example rectangles
of fixed size and this was done for the first mark in our example. Here, the "y" field is mapped to the
"y-scale", but the "x" is mapped to 140 to have bars of the same size, as mentioned above. The "x" field of
the next two marks are then mapped to the target value. They additionally have a multiplier added, which
represents the quantitative scales. The marks are drawn in the sequence they are specified, which means
the second and third overlay the first one. The fourth mark represents the current value of the earnings
and thus is mapped to the data-field "amount”. This mark has a offset set for the "y" and "height" field.
This is set such that the bar gets thinner than the ones of the quantitative scales. The offset in the "y" shifts
the bar down the defined pixels. Because the bar is shifted down, also the height has to be decreased and
since we want the bar to be centered within the quantitative scales, we have to reduce the height by the
doubled size of the offset. The last mark is representing the comparative measure. It is mapped to the
companies and the target values and also has a fixed width. The result of our specification is shown in
the figure below.

Creation of the Specification

Figure 5.2: Vega bullet graph custom visualization

21

Money earned

T
"o

1
140

Chapter 6

Tools and Bindings

6.1 Tools for Authoring
6.1.1 Vega Live Editor

Figure 6.1: The Vega Editor Web-app [Screenshot taken by the authors of this survey]

Vega T clear <> Format 4 export o share ® 88 Examples §P cist B VegaDocs ol
1 , “step": 0.01} L -
15 o
16
17
18 0.1
19
2
21
22 190, "step”: 1}

23
2
2 10, "stept: 0.5} startAngle 173
28 endAngle 6.11
22 padAngle 0.031
30 b £ “ch ¥
31 3 innerRadius 37
2 comerRadius 4
> sort 7]
3 “data
36 ane
37 "values’
0
a
a2
43
4]
as
46
47
a8
49
se
51
53 1
sa }
55],
s6
57
60
61 "table”, "field": "id"},
62 "range": {"scheme”: "category20"}
6 |1
66 marks™: [
L0GS(0) DATAVIE N R ~

The Vega Editor is a freely online available web-app, which supports upon creating and viewing spe-
cifications. It supports Vega and Vega-Lite and automatically detects if a Vega or Vega-Lite specification
is pasted into the editor. At it’s current state it provides over 60 examples for Vega and over 120 for
Vega-Lite out of the box. These examples can be easily imported into the editor and then reworked to the
special needs of the user. A screenshot of the editor is shown in Figure 6.1.

22

Tools for Authoring 23

Other main features of the Vega Editor are:

* Live update of the view while editing the specification.
* Changing between Canvas and SVG rendering.

* Automatic formatting of the specified JSON.

» Exporting as PGN, SVG and JSON.

» Sharing specifications by links.

* Intellisense for automatic completion.

* Data and signal viewer as depicted in Figure 6.2

Figure 6.2: Data viewer of the Vega editor [Screenshot taken by the authors of this survey]

LOGS (0) DATA VIEWER SIGMAL VIEWER a4

table

company amount target

A 28 30
B 55 45
C 43 20
D 91 120

6.1.2 Vega Voyager 2

Vega Voyager 2 [Voyager2 2019] is and data exploration and visualization tool inspired by Tableau and
Polaris. After loading a dataset, the user is able to interactively explore and visualize the dataset by
draging and dropping different variables of the dataset into properties like x and y coordinates, color,
size, shape, etc. which then affect the look of the visualization.

There is also the possibility to filter the data before visualizing it.

To simplify this process, the tool generates an "Univarariate Summary", which is a visualization of all
the different values within every field in the dataset. This summary can be used to get an initial overview
of the data to then combine different fields in the final dataset.

The visualizations can then be exported as a Vega-Lite specification file.

24 6 Tools and Bindings

Figure 6.3: Screenshot of Vega Voyager 2 [Screenshot taken by the authors of this survey]

ece Voyager 2
oI L |
-%&f- datavoyager W Bookmarks (1) O undo = |
[——
Data Encoding e
Eous I -+ e o
Fields y- - # Miles per .. % Europe Japan usa
* A inders T+ — .
= Mark (" circle N 50 Cylinders
A Name T+ ——— es
size ~ ~ 3 Weight_in_... x 20 4
A Origin T+ 5
B Year T+ color ~ A Cylinders *® 5 &
3 8
~ # Acceleration T+ shape E ; Weightin Ibs
« # Displacement T + [detai - g . 1,000
= 2,000
v 3 Horsepower T 4 Ml o = “ .: a0
~ # Miles_per_Gallon T + 10
Facet 4,000
~ # Weight in_lbs T +
At == row ~ B9 YEAR(Year) x 53 6,000
column A Origin x
Wildcard Flelds 40
Wildcard Shelves
Quantitative Fields + s
A Categorical Fields ~ + = - g 3
E =
& TemporalFields + [Filter 2 »
2
A Origin x H
Select All / Clear All Q 1o ~
Europe
& Japan
USA 53]
notes
Related Views !

Download logs

6.1.3 Vega Desktop

Vega Desktop [Desktop 2019] is a tool to view Vega or Vega-Lite specification files. A user can
open specifications, enable watching so that the visualization changes automatically when the JSON-
Specification has been changed and it is also possible to export visualizations as SVG and PNG.

One shortcoming of Vega Desktop is, that the built-in version of Vega and Vega-Lite is lagging behind
the Vega development. The built-in version of the current Vega Desktop is 4.4.0 but at the time of writing,
the current version on Github is 5.4.0 [Repository 2019].

Figure 6.4: Screenshot of Vega-Desktop [Screenshot taken by the authors of this survey]
[] @ Vega Desktop - /Users/lukas/Dropbox/Daten/Uni Dropbox/infoviz/vega-examples/examples/scatterplot.vl.json

BLoad 2 Watch X SVG & PNG ¥¥ Debug Vega

s0-
40
=
2
w 1
& m
I_|
5
)
g . ®
.\ "
10 . L
0 r - T T
o 50 10 150 200

Horsepower

Vega-Lite v3.0.0-rc10

Bindings for Programming Languages 25

6.2 Bindings for Programming Languages

Due to the use of JSON for the specification, it is fairly simple to generate specification files as every
common programming language has support for generating text or JSON files.

Vega and Vega-Lite are developed in Javascript, so the only native possibility to generate graphics
using one of them is by using a browser or Javascript Environments such as Node.JS.

The command line interface (CLI) vega-cli can be used to generate images such as SVG or PNG out
of specification files. The CLI is developed using Node.JS. A developer can execute the CLI to generate
graphics in the SVG or PNG format from within a programming language which supports execution of
3rd party programs.

To include visualizations in an application with a GUI, a web-view with support for Javascript is
needed. Most modern GUI-frameworks have support for that.

However, there is no official interface for 3rd party programming languages. Some inofficial imple-
mentations are:

* Altair for python [Vallandingham 2018]
* Vegal.ite.jl - Vega-Lite for Julia [VegalLite.jl 2019]
* Elm-Vega - for creating Vega-Lite specifications in ELM [Elm-Vega 2019]

* Vegas for Scala and Spark [Vegas 2019]

26

6 Tools and Bindings

Bibliography

Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer [2011]. D? data-driven documents. 1EEE trans-
actions on visualization and computer graphics 17.12 (2011), pages 2301-2309 (cited on page 3).

D3 v5 Line Chart [2019]. 20 May 2019. https://bl.ocks.org/gordlea/27370dleea8464b04538e6d8ced39e89
(cited on page 3).

Dataflow Vis [2019]. 20 May 2019. https://github.com/vega/dataflow-vis (cited on page 6).

Desktop, Vega [2019]. Vega Lite Wrapper for Julia. Github Repository. 05 May 2019. https://github.
com/vega/vega-desktop (cited on page 24).

Elm-Vega [2019]. Vega(Lite) Wrapper for Elm. Github Repository. 05 May 2019. https://github.com/
gicentre/elm-vega (cited on page 25).

ggplot2 [2019]. 05 May 2019. https://ggplot2.tidyverse.org/ (cited on pages 1, 3).
R-Project [2019]. 05 May 2019. https://www.r-project.org/about.html (cited on pages 1, 3).

Repository, Vega [2019]. Vega on Github. Github Repository. 05 May 2019. https://github.com/vega/
vega (cited on page 24).

Sarkar, Dipanjan [2018]. A Comprehensive Guide to the Grammar of Graphics for Effective Visual-
ization of Multi-dimensional Data. Blog article. 12 Sep 2018. https: //towardsdatascience . com/
a - comprehensive - guide - to - the - grammar - of - graphics - for - effective - visualization- of -multi -
dimensional-1£92b4ed4149 (cited on page 2).

Vallandingham, Jim [2018]. An Introduction to Altair. Blog article. 23 Mar 2018. https://vallandingham.
me/altair_intro.html (cited on page 25).

Vega — A Visualization Grammar [2019]. 26 Mar 2019. https://vega.github.io/vega/ (cited on page 3).

Vega SQOL [2019]. 20 May 2019. https://www.omnisci.com/docs/latest/6_VegaAtaGlance.html (cited on
page 6).

Vegal.ite.jl [2019]. Vega Lite Wrapper for Julia. Github Repository. 05 May 2019. https://github.com/
fredo-dedup/VegaLite. j1 (cited on page 25).

Vegas [2019]. Vegas - The missing Mathplotlib for Scala. Website. 05 May 2019. https://www.vegas-
viz.org/ (cited on page 25).

Voyager2 [2019]. Voyager2. Online Tool. 05 May 2019. http://vega.github.io/voyager/ (cited on
page 23).

Wilkinson, Leland [2005]. The Grammar of Graphics. Berlin, Heidelberg: Springer-Verlag, 2005. ISBN
0387245448. doi:10.1007/978-1-4757-3100-2 (cited on page 1).

27

https://bl.ocks.org/gordlea/27370d1eea8464b04538e6d8ced39e89
https://github.com/vega/dataflow-vis
https://github.com/vega/vega-desktop
https://github.com/vega/vega-desktop
https://github.com/gicentre/elm-vega
https://github.com/gicentre/elm-vega
https://ggplot2.tidyverse.org/
https://www.r-project.org/about.html
https://github.com/vega/vega
https://github.com/vega/vega
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149
https://vallandingham.me/altair_intro.html
https://vallandingham.me/altair_intro.html
https://vega.github.io/vega/
https://www.omnisci.com/docs/latest/6_VegaAtaGlance.html
https://github.com/fredo-dedup/VegaLite.jl
https://github.com/fredo-dedup/VegaLite.jl
https://www.vegas-viz.org/
https://www.vegas-viz.org/
http://vega.github.io/voyager/
http://amazon.co.uk/dp/0387245448/
http://doi.org/10.1007/978-1-4757-3100-2

	Contents
	List of Figures
	List of Listings
	1 Declarative Visualization - Grammar of Graphics
	1.1 Grammar of Graphics
	1.2 Fundamental components of the Grammar of Graphics
	1.2.1 Data
	1.2.2 Aesthetics
	1.2.3 Scale
	1.2.4 Geometry/Geometric objects
	1.2.5 Facets
	1.2.6 Coordinate system
	1.2.7 Themes

	2 Overview of Vega and Vega-Lite
	2.1 What is Vega?
	2.2 What is Vega-Lite?
	2.3 D3.js
	2.4 How do they work?
	2.4.1 Parser
	2.4.2 View
	2.4.3 Renderer

	2.5 Technology Stack Summary

	3 Vega
	3.1 Basic Elements of Vega
	3.2 Basic Bar Chart Example
	3.2.1 Visualization size and data set
	3.2.2 Connect Data with Visualization Axes
	3.2.3 Visualize the Bars
	3.2.4 Interaction

	3.3 Advanced Visualization Horizon Graph Example

	4 Vega-Lite
	4.1 Built-in Visualization Types
	4.2 Basic Bar Chart Example in Vega-Lite
	4.3 Differences between Vega and Vega-Lite?

	5 Creation of a Custom Visualization using Vega
	5.1 Bullet Graph
	5.2 Creation of the Specification

	6 Tools and Bindings
	6.1 Tools for Authoring
	6.1.1 Vega Live Editor
	6.1.2 Vega Voyager 2
	6.1.3 Vega Desktop

	6.2 Bindings for Programming Languages

	Bibliography

