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Abstract

R is a software environment specifically designed for statistical computing and graphics, as de-
scribed in [TRF 2018]. This survey paper explores the capabilities of R with respect to data visu-
alisation.

Several R packages provide functionality for static data visualization. In this survey paper the
three packages graphics, lattice, and ggplot2 are described briefly. Examples of their usage are
shown, and their specific strengths and weaknesses are discussed.

R can also be used for interactive data visualisation. This survey paper describes some of the most
popular R packages for interactive data visualisation, such as shiny, htmlwidgets, ggiraph, ggvis,
rbokeh, and plotly. For each of these packages its functionality is briefly described, and code
examples are shown. Furthermore, these packages for interactive data visualisation are compared
in an overview table, and recommendations are given regarding the usage of the packages for
different visualisation tasks.
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Chapter 1

Introduction

R is a programming language and free software environment for statistical computing and graphics. it is widely
used among statisticians and data miners who developer statistical software and data analysis. R is a GNU
package. The source code is written primarily in C, Fortran and R.

Capabilities of R are extended through packages, which allow to used some specialized statistical tech-
niques, import/export results etc. More than 12 000 packages are available.

R has a command line interface, but there is also a graphical front-end and integrated development envir-
onment such as R Studio. It includes a code editor, debugging and visualization tools. It is possible to view
the result of written code inside R studio. However, this developing environment also makes it also possible to
export the written code in form of .html file as well as publishing the written code online by deploying it on a
server.
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Chapter 2

Static Data Visualization in R

This chapter explains how R can be used for static data visualization. First, the two different graphics systems
that exist in R are briefly introduced. Then, the three most popular R packages for static data visualization are
described.

2.1 Graphics Systems in R

There are two fundamentally different, non compatible graphics systems existing within R: graphics and grid.
The basic concepts of these two graphics systems, their similarities and main differences are briefly explained
in the following paragraphs.

As described by Paul Murrell in Murrell [2006, pages 21, 164], the underlying concept for both R graphics
systems is the "painters’ model": Like a painter draws on a canvas, the output of graphics and grid functions
occurs on the currently open "graphics device", which can be the screen or a file (.pdf, .png, .svg etc.). Similar
to a painter’s drawing, the new output of the graphics or grid functions is drawn on top of the previous output,
and later output obscures any earlier output, when it is overlapping.

Regarding the drawing region, graphics and grid follow different concepts. In the graphics system the
page is split into defined regions: the (current) plot region, where usually data points and lines are drawn,
the (current) figure region, where usually the axis and labels are drawn, and the outer margins, where for
example the title of the graphic is located. In the grid system, there are no pre-defined drawing regions. Instead
arbitrary rectangular regions, so called viewports, can be defined, and the drawing is done in the currently active
viewport. (A detailed description of the concept of viewports can be found in [Murrell 2018].)

Another aspect, where graphics and grid follow different concepts, is the output of the plotting. In the
graphics system the output of the graphics functions is the graphical output on the screen or in a file. This
output can only be modified by changing the R code and re-running the whole plotting process. In the grid
system the graphics functions produce objects (graphic elements and viewports) representing the output. These
objects can be saved and modified, and thus grid plots can be edited interactively. (A detailed description of the
grid graphics model can be found in chapter 5 of [Murrell 2006].)

The graphics package includes high-level functions for producing complete plots, such as for example scat-
terplots, barcharts, histograms, linecharts, or piecharts. Therefore, it is widely used for quick data visualization.
The grid package, however, contains only low-level functions for drawing graphical elements such as for ex-
ample points or lines, and offers no functions for drawing complete plots. Thus, the grid package is usually
not directly used for data visualisation, but there are two popular R packages for data visualization, the lattice
package and the ggplot2 package, which are built on grid.

The usage of these three R packages (graphics, lattice, and ggplot2) for static data visualization is described
in more detail in the following chapter.

3
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(base) graphics grid

lattice ggplot2

Popular R Packages for Static Data Visualization

Figure 2.1: The three most popular R packages for static data visualization are (base) graphics, lattice,
and ggplot2.

2.2 Popular R Packages for Static Data Visualization

Among the many packages that are available within R, the most popular packages for static data visualization
are graphics, lattice, and ggplot2. The graphics package is often called "base graphics", as it is the traditional
R graphics package, which is included in the standard R distribution. The lattice and ggplot2 packages are built
upon the grid graphics system, as shown in Figure 2.1. The grid package, as well as lattice and ggplot2 are not
included in the standard R distribution, they are add-on packages that need to be installed separately.

In the following subsections a closer look is taken into the usage of graphics, lattice, and ggplot2 for static
data visualisation. For each of these three R packages the underlying concept for creating graphs is explained.
Code examples are shown to illustrate these underlying concepts, and the strengths and weaknesses of each of
these three packages are discussed.

2.2.1 Usage of graphics for Static Data Visualization

Since the graphics package was one of the first packages for R extension, it is often called "base graphics" or
"traditional graphics". The graphics package is a collection of high-level and low-level graphics functions.

A high-level graphics function creates a complete plot: it initialises the graphics window, sets the scale,
and renders the graphic. For many standard graph-types, such as for example barcharts, linecharts, scatterplots,
histograms, sunflowerplots, boxplots, mosaicplots..., there is a specific high-level function available in the
graphics package. The most important high-level function in the graphics package, however, is the plot()
function. The plot() function is a generic function, it produces different types of plots depending on the type
of the data. For example, for numeric data the plot() function creates a scatterplot while it creates a barplot for
factor data.

In addition to the high-level graphics functions, the graphics package provides also a set of low-level
graphics functions, which add some elements (such as for example labels, points, lines, or arrows) to an existing
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plot. All functions in the graphics package accept various parameters (such as colour, line-type, line-width,
font-type, data-symbol...) to fine-tune the output and modify (almost) any aspect of the visual appearance of
the plot.

In the usual work-flow for static data visualization with base graphics, first a high-level function is used
to create a quick plot of the data, and then low-level functions are used to improve the visual appearance and
comprehensibility of the graph by adding for example labels, annotations, or regression lines. Several books
and tutorials, such as for example Kabacoff [2017b], Kabacoff [2011, chapter 3], Murrell [2012, chapters 2-3],
and Teetor [2011, chapter 10], explain this workflow in detail for a lot of different plot-types.

The code example in Listing 2.1 shows how to utilise the base R graphics package for creating the simple
scatterplot depicted in Figure 3.3: The first line of the code specifies that the mtcars data set is to be used for
the graph. Then, the plot() function is used to create the scatterplot. Finally, in the last line of the code, the
abline() function is used to add the red regression line to the plot.

1 data(mtcars)
2 plot(x=mtcars$cyl , y=mtcars$mpg ,
3 xlab = "cyl", ylab = "mpg",
4 main = "mtcars: Cars’ efficiency (mpg vs #cylinders)")
5 abline(lm(mtcars$mpg~mtcars$cyl), col = "red")

Listing 2.1: The code for building a simple scatterplot plus regression line with base R graphics basically
consists of a high-level graphics function (- in this example the plot() function), which creates
the graph, followed by a low-level graphics function (- in this example the abline() function),
which adds further graphical elements to the graph.

For simple graphs, base R graphics is fairly straight forward to use. It produces quick graphs with just a few
lines of code. Furthermore, data visualization with base R graphics is quite convenient, since graphics comes
with the standard R distribution and no extra package needs to be installed. In fact also very sophisticated and
complex graphs can be built with graphics functions, as the variety of available low-level graphics functions
and the extensive set of parameters support building up graphs from scratch as well as customising graphs
created with any of the high-level graphics functions available in the graphics package.

However, building complex graphs with base R graphics functions is quite tedious. As described in Teetor
[2011, chapter 10] and shown in Rickert [2015], the code for complex graphs becomes confusing and bewilder-
ing when utilising base R graphics for creating complex graphs. For example the procedure for adding a legend
to the graph is quite prone to errors, since not only the coordinates for positioning the legend must be picked
manually but also the correspondence between the labels and the data-symbols, line-types, and colours is not
automatic with base R graphics. Therefore, many experts, as for example Susane Johnston in Johnston [2013],
recommend to use other graphics packages, namely lattice or ggplot2, for creating more complex graphs.

2.2.2 Usage of lattice for Static Data Visualization

The lattice package is built upon the grid graphics system, as already explained in a previous section and shown
in Figure 2.1. Like almost all graphics-related R packages (with the exception of the base R graphics package)
lattice is an add-on R package, which means that it is not included in the standard R distribution but must be
installed separately.
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Figure 2.2: Scatterplot showing mpg versus cyl from the classic mtcars data set. This scatterplot was
created utilising the base R graphics package.

The lattice package provides a bunch of high-level functions for creation of different types of plots. Most of
these high-level functions have fairly descriptive names, such as for example barchart(), histogram(), xyplot(),
contourplot(), and parallel(). In addition, lattice provides also a collection of so called panel.functions, which
can be called within a high-level function to add additional elements such as for example lines, curves, or a
grid. A detailed description of all available lattice functions can be found in the regularly updated lattice manual
[Sarkar 2017].

In the usual work-flow for static data visualization with lattice, a suitable high-level function is selected to
create the desired plot of the data, and then low-level panel.functions can be nested into the high-level function
to add for example a regression line or a grid.

In the manual of the lattice package [Sarkar 2017], Deepayan Sarkar, the developer of the lattice package,
describes lattice as:

“a powerful and elegant high-level data visualization system inspired by Trellis graphics, with
an emphasis on multivariate data”

This quote points to the underlying motivation for the development of the lattice package: lattice was
developed with a focus on producing Trellis plots. Thus, as described in [Sarkar 2008], lattice was designed
to effectively combine multiple plots in a page with properly coordinated scales, aspect ratios and labels. An
example of a Trellis plot created with lattice is shown in Figure 2.3, and the code used for creating this Trellis
plot example (adapted from [Kabacoff 2017a]) can be found in Listing 2.2.

Traditional graphs are implemented with lattice as a single-panel Trellis display. Figure 2.4 shows an
example of such a single-panel Trellis display, which looks quite similar to the scatterplot created with base R
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Figure 2.3: Example of a Trellis plot created with lattice. This plot shows the relationship of miles per
gallon and car weight by number of cylinders and gears for the classic mtcars data set.

1 library(lattice) #use the lattice package
2 attach(mtcars) #use the mtcars data set
3
4 # create factors with value labels
5 gear.f<-factor(gear,levels=c(3,4,5),
6 labels=c("3gears","4gears","5gears"))
7 cyl.f <-factor(cyl,levels=c(4,6,8),
8 labels=c("4cyl","6cyl","8cyl"))
9

10 # draw scatterplots of mpg vs. wt depending on number of cylinders and gears
11 xyplot(mpg~wt|cyl.f*gear.f,
12 main="mpg ~ car-weight by Cylinders and Gears",
13 ylab="Miles per Gallon", xlab="Car Weight")

Listing 2.2: By using the lattice package, drawing a Trellis plot is straightforward. In this example code
(adapted from [Kabacoff 2017a]) for the classic mtcars data set, the xyplot() function is used
to draw a Trellis plot composed of scatterplots showing miles per gallon (mpg) versus car
weight (wt) depending on the number of cylinders (cyl) and the number of gears (gears).
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Figure 2.4: Scatterplot showing mpg versus cyl from the classic mtcars data set. This scatterplot was
created utilising the lattice package.

graphics (see Figure 3.3). The lattice code used for creating the scatterplot shown in Figure 2.4 can be found
in Listing 2.3.

The main advantage of lattice is, that many tasks that are rather complex and complicated in base R graphics
are automated in lattice. For example, lattice takes automatically care for optimum positioning of the elements
of the plot such as legends, and labels. Also the correspondence between the labels and the data-symbols,
line-types, and colours in the legend is handled automatically by lattice. Since lattice is based on grid, it is easy
to utilise grid functions to further fine-tune and enhance any plot created with lattice.

However, adding additional elements (for example a regression line or annotations and arrows) to the plot
is more complicated in lattice than in base R graphics. Furthermore, since the complete lattice plot is put into
one single function, for more complex graphics the code can easily become confusing and unclear, especially
when there are many panel.functions nested within the high-level function.

2.2.3 Usage of ggplot2 for Static Data Visualization

ggplot2 is, like lattice, also based on the grid graphics system. ggplot2 is an add-on R package, which is not
included in the standard R distribution but must be installed separately.

ggplot2 implements the concept of the "layered grammar of graphics". The concept of the "grammar of
graphics", which helps to describe the components of a graphic, was developed by Leland Wilkinson in 2005.
The "grammar of graphics" is explained thoroughly in [Wilkinson 2005]. Hadley Wickham, the developer
of the ggplot2 package, describes in [Wickham 2010], how the "grammar of graphics" is related to the way
graphics are created with ggplot2. Rather than defining high-level functions for creating complete plots (as in
base R graphics and lattice), in ggplot2 a graphic is built from a set of independent components that can be
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1 library(lattice)
2 xyplot(mpg ~ cyl, data = mtcars,
3 main = "mtcars: Cars’ efficiency (mpg vs #cylinders)",
4 panel = function(x, y) {
5 panel.xyplot(x, y)
6 panel.abline(lm(y ~ x), col = "red")}
7 )

Listing 2.3: With lattice, the code for building a simple scatterplot plus regression line consists of a single
high-level lattice function (- in this example the xyplot() function). The panel.abline() function
for drawing the regression-line is nested into the high-level xyplot() function.

composed in various different ways. [Wickham 2016]

As described in [Wickham 2016], a ggplot2 plot is composed of:

• Data that shall be visualised

• Aesthetic mappings describe, how variables (data) are mapped to visual properties such as for example
colour, size, shape, distance from axis...

• Geometric objects such as points, lines, polygons...

• Statistic transformations such as for example binning counting observations (to get a histogram)...

• Scales draw legends and axes to map values in the data space to values in the aesthetics space

• Coordinate System such as for example Cartesian coordinates or polar coordinates; provides axis and grid
lines

• Faceting specification describes how to split data into subsets and how to display these subsets as small
multiples

• Theme specifies general aspects such as font size, background colour...

The code example in Listing 2.4 shows how the scatterplot depicted in Figure 2.5 was created with ggplot2.
As can be seen in this code example, the ggplot2 syntax, where the single functions describing the components
of the plot (data, aesthetic mappings, geometric objects, labels, and title) are combined with "+" characters,
makes the underlying "layered grammar of graphics" concept clearly visible. On the one hand, the layered
structure of ggplot2 helps to keep the code clear and graspable. On the other hand, the layered structure of the
code also makes it easy to add further elements to the plot. For example, the red regression line here in this
code example (Listing 2.4) is added to the plot by simply specifying an additional geometric object (geom) in
code-line 5.

The underlying concept of the "layered grammar of graphics" makes ggplot2 very versatile: composing
graphics by combining independent components rather than defining high-level functions that build-up com-
plete plots, enables also the creation and exploration of new, non-standard types of plots.

ggplot2 provides a large number of parameters to customise a plot. However, for many of these parameters
useful defaults are specified, so that nice-looking plots can be created conveniently with the default settings.

ggplot2 is used by other developers as a basis for creation of new R add-on packages: Currently there are
more than 40 extensions for ggplot2 available on the CRAN repository.
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1 library(ggplot2)
2 ggplot(data = mtcars) +
3 aes(x = cyl, y = mpg) +
4 geom_point() +
5 geom_smooth(method = "lm", se = FALSE, col = "red") +
6 xlab("cyl") +
7 ylab("mpg") +
8 ggtitle("mtcars: Cars’ efficiency (mpg vs #cylinders)")

Listing 2.4: The ggplot2 code clearly shows, how the single components (data, aesthetic mappings,
geometric objects, labels, and title) are stacked to build a scatterplot plus regression line.

Figure 2.5: Scatterplot showing mpg versus cyl from the classic mtcars data set. This scatterplot was
created utilising the ggplot2 package.
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However, ggplot2 is not in all aspects superior. For example, it is substantially slower than base R graphics
and also slower than lattice. Fine-tuning of plots by utilising grid functions is more complicated for ggplot2
than for lattice plots.

2.2.4 Comparison of graphics, lattice, and ggplot2

In principle all three R packages (graphics, lattice, and ggplot2 support creation, and customisation of static
data visualizations. However, each of these packages has got its specific strengths and weaknesses.

• graphics is fast, convenient to use, and included in the standard R distribution. However, modification
of an existing plot is not possible. graphics ist good to use for quick exploration of data and for simple
standard plots.

• lattice deals automatically with spacing, margins, and positioning of multiple plots on one display. Graph-
ical objects can be saved and modified (via grid). However, lattice cannot easily "add" elements (for
example annotations...) to the plot. lattice is good to use for multivariate data visualisation and multiple
plots on one display.

• ggplot2 automatically deals with spacing and margins. ggplot2 provides a lot of defaults (but customisable
if desired), and there are many extensions available (for example ggiraph...). However, ggplot2 is slower
than graphics and lattice. Modification of saved graphical objects (via grid is more difficult than in lattice,
and unfortunately ggplot2 provides only a fixed aspect ratio for "faceting" plots. ggplot2 is good to use for
nice plots by default, and for animated plots (usage of ggplot2 in combination with the extension ggiraph).



12 CHAPTER 2. STATIC DATA VISUALIZATION IN R



Chapter 3

Interactive Data Visualization in R

First, this chapter contains some of the most popular R packages which can be used for interactive data visual-
ization. Later on we highlight a few other, interesting packages which we came across while researching and
gathering data on the common ones.

3.1 Popular R Packages for Interactive Data Visualization

Among the many packages that are available within R, the most popular packages for interactive data visu-
alization are shiny, ggvis, htmlwidgets, ggiraph, rbokeh and plotly. We had a closer look into each of those
packages and the following chapters contain a short introduction to each package, highlighting advantages as
well as providing a small code example with its corresponding output.

3.1.1 htmlwidgets

Htmlwidgets is a framework that connects JavaScript libraries to R programming language. It acts like a
connector which simplifies usage of Javascript libraries in R programming language. The less amount of code
lines is needed to produce same effect in R than it would have been needed when writing pure JavaScript code.
This way, the user only has to be able to write code in R and he can make web page without any knowledge
about HTML, CSS or JS.

There are various packages in R that take advantage of htmlwidgets framework (leaflet, dygraphs, net-
workD3, DataTables, rthreejs to name a few). An htmlwidget works like an R plot, but it also produces an
interactive web visualization. While running the app inside R studio, one can export it as .html file and have it
as a web page. The HTML code is minified and compressed. However, this makes it harder later if one wants to
change details in the .html, because it is almost impossible to tell what the code is doing by just reading it: it’s
compressed and minified, and looks "ugly". From the positive side, writing code in R and using htmlwidgets
takes much less time than writing the actual HTML/CSS/JS code.

Writing htmlwidgets code is possible in two ways:

• in the R console

• in R studio

The main difference between them is that when using R markdown, user has nicer interface and better
overview of any error or warning messages. In both situations, user is able to see outcome of the code in the
"Viewer" part and there is also a possibility of exporting current work in a form of .html file.

13
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Figure 3.1: Example how to use Leaflet htmlwidget with the help of R console

Figure 3.2: Example how to use htmlwidget with the help of R console
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The main benefit of using htmlwidgets is that user does not have to be experienced web developer. He does
not have to have any knowledge about HTML/CSS/JS coding. If he knows R programming language, he can
use htmlwidgets and build websites by writing less amount of code lines with R, which would then be converted
into HTML/CSS/JS. From the other side, a negative thing could be that after building .html file thanks for R’s
"export" function, it is really unclear what the code inside this file is doing. This is mainly because code is
compressed and not readable from human perspective of view. So if user wants to do some changes in this
.html file, it would not be that simple.

3.1.2 ggiraph

ggiraph is R package which allows users making ggplot interactive. This package is htmlwidget as well, since
it allows building interactive graph which is converted into .html file.

The main difference between ggiraph and ggplot2 is that ggiraph is dynamic: it allows interaction with the
user. From the other side, ggplot2 is static.

Figure 3.3: Example of graph drawn by ggiraph package
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1 library(ggplot2)
2 library(ggiraph)
3
4 theme_set(theme_minimal())
5
6 dataset <- mtcars
7
8 dataset$carname <- row.names(dataset)
9

10 gg_point_1 <- ggplot(dataset, aes(x = disp, y = qsec, tooltip = carname, data_id =
carname, color= wt) ) +

11
12 geom_point_interactive(size=3)
13
14 # htmlwidget call
15 ggiraph(code = {print(gg_point_1)}, tooltip_offx = 20, tooltip_offy = -10 )

Listing 3.1: ggiraph sample code for producing interactive graph

In the code sample it is shown that ggplot2 and ggiraph packages are being included. After that, dataset is
being defined as well as labels to be shown on the graph. It’s made in a way that when user hovers over a dot,
he will see a description of the current data point he is checking.

3.1.3 shiny

The open source R package shiny, allows the user to create interactive webapplications without requiring know-
ledge of html, css or javascript. However, it is possible to enhance and style the visualizations with these tech-
niques.
Other graphics can be used inside shiny apps, for example ggplot2, ggvis and htmlwidgets. Each shiny app
consists of two different components, which are usually (used to be multiple files in the past) contained in a
single file called app.R. These components are:

• UI component: the user interface object

• Server component: the server function with input and output collections

• ShinyApp: creates a shiny app with ui and server components as parameters

The syntax is easy to understand and uses a fluent style. One of the most important features of shiny is,
that the inputs and outputs are connected "live" together. In other words the whole visualization is reactive. By
changing any input variable (for example via a slider control), all connected outputs (for example chart values)
are updated automatically. It is important to notice, that just the affected parts are updated and not the whole
page being reloaded. The goal is to make it easy to capture inputs from a webpage, make them available in R
and display the output again.
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Figure 3.4: shiny reactive structure

We can see in the following example how easy it is to create a simple reactive shiny webapplications
without having to code any html, css or javascript. This example plots the built-in faithful dataset with a
dynamic number of bins.

1 # Define UI for app that draws a histogram ----
2 ui <- fluidPage(
3 # App title ----
4 titlePanel("Hello Shiny!"),
5 # Sidebar layout with input and output definitions ----
6 sidebarLayout(
7 # Sidebar panel for inputs ----
8 sidebarPanel(
9 # Input: Slider for the number of bins ----

10 sliderInput(inputId = "bins",
11 label = "Number of bins:",
12 min = 1,
13 max = 50,
14 value = 30)
15 ),
16 # Main panel for displaying outputs ----
17 mainPanel(
18 # Output: Histogram ----
19 plotOutput(outputId = "distPlot")
20 )
21 )
22 )
23 # Define server logic required to draw a histogram ----
24 server <- function(input, output) {
25 # Histogram of the Old Faithful Geyser Data ----
26 # with requested number of bins
27 # This expression that generates a histogram is wrapped in a call
28 # to renderPlot to indicate that:
29 #
30 # 1. It is "reactive" and therefore should be automatically
31 # re-executed when inputs (input$bins) change
32 # 2. Its output type is a plot
33 output$distPlot <- renderPlot({
34 x <- faithful$waiting
35 bins <- seq(min(x), max(x), length.out = input$bins + 1)
36 hist(x, breaks = bins, col = "#75AADB", border = "white",
37 xlab = "Waiting time to next eruption (in mins)",
38 main = "Histogram of waiting times")
39
40 })
41 }
42 shinyApp(ui, server)

Listing 3.2: shiny sample code for producing an interactive barchart

To run this example (or any other shiny app in general):
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1 library(shiny)
2 runExample("path to the folder containing the shiny app")

Listing 3.3: How to start a shiny app

Figure 3.5: shiny interactive barchart example

3.1.3.1 Deploying shiny apps

There are different ways shiny apps can be deployed. For example:

• Open source shiny server (self hosted) - for Linux

• Shiny server pro (self hosted, commercial) - for Linux

• Cloud Service - shinyapps.io (free and paid plans available)

The open-source shiny server is relatively easy to install and configure, if you are familiar with the Linux
operating system. Compared to the free version, the paid server version ($9,995 per year) offers additional
features and comfort such as:

• Authentication (OAuth, SSL, Active Directory etc.)

• Better scalability

• Monitoring, metrics & management
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If you do not can or want to install and maintain extra software, there is the possibility to deploy shiny apps
to a cloud service, which will take care of hosting for you. One example for such a service is shinyapps.io. The
procedure is as follows:

• Create an account at shinyapps.io (you will need a valid email address)

• Login at shinyapps.io and copy the access token code

• Install the R package rsconnect locally, for easier deployment

• Enter the access token code in RStudio preferences (Tools -> Global Options -> Publishing)

• Use rsconnect one-click publish button to deploy your app to shinyapps.io

• Manage your shiny apps on the shinyapps.io dashboard

The following table gives a short comparision of the different deployment options for shiny webapplica-
tions.

Type Pros Cons
Open source shiny server Free, full control Only Linux, more work to install/con-

figure
Shiny server pro (paid) Support, additional features (scaling,

authentication etc.)
expensive, only Linux

shinyapps.io Easy, no installation/hosting needed,
limited free plan available

No full control, cloud service

Table 3.1: Shiny deployment options comparision

3.1.4 ggvis

In this section we describe the interactive data visualization package ggvis. It allows the user to declaratively
create interactive graphics. The syntax is strongly inspired by the widely used static graphics package ggplot2.
Users who are familiar with ggplot2 should therefor have no problems understanding the principles of ggvis.
One obvious difference is that ggvis uses a functional interface, so components are connected by using the
pipe-like operator %>% instead of +.
Graphics created with ggvis can be run locally in RStudio or in a browser. If run in RStudio the result is dis-
played in the viewer panel, which is possible due to the fact that RStudio itself is also a web browser. It is also
possible to use the shiny infrastructure to publish ggvis graphics.
The goal of ggvis, is to combine the best aspects of R and the Web. Graphics and transformations are pro-
grammed in R, and Vega is used to render the result in the browser.
gvvis and Vega have a similar relationship as gglpot2 and grid. The user does not need any knowdledge of Vega
to use the basic functionality of ggvis.

1 library(ggvis)
2 library(dplyr)
3
4 # Barchart of the build-in pressure/temperature data set
5 pressure %>%
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6 ggvis(~temperature , ~pressure) %>%
7 layer_bars()

Listing 3.4: ggvis sample code for producing a simple graph

Figure 3.6: Example of a barchart drawn by ggvis

3.1.4.1 ggvis interaction with shiny

ggvis interactivity is built on top of shiny‘s reactive programming model. Most of the basic interactive controls
in ggvis have a similar equivalent in shiny.
Compared to shiny however, ggvis functions have been implemented with the goal to simplify and minify the
argument list. Some arguments are therefor optional in ggvis controls (for example label) and have a different
order compared to the same shiny function.
It is also possible to include ggvis graphics within shiny, as we can see in the following examples.

1 library(shiny)
2 library(ggvis)
3
4 ui <- fluidPage(sidebarLayout(
5 sidebarPanel(
6 sliderInput("n", "Number of points", min = 1, max = nrow(mtcars),
7 value = 10, step = 1),
8 uiOutput("plot_ui")
9 ),

10 mainPanel(
11 ggvisOutput("plot")
12 )
13 ))
14
15 server <- function(input, output, session){
16 # A reactive subset of mtcars
17 mtc <- reactive({ mtcars[1:input$n, ] })
18
19 # A simple visualisation. In shiny apps, need to register observers
20 # and tell shiny where to put the controls
21 mtc %>%
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22 ggvis(~wt, ~mpg) %>%
23 layer_points() %>%
24 bind_shiny("plot", "plot_ui")
25 }
26
27 shinyApp(ui = ui, server = server)

Listing 3.5: ggvis sample code for producing an interactive shiny graph

Figure 3.7: Example of an interactive graph in ggvis and shiny

3.1.5 rbokeh

Rbokeh is a native R plotting library with a flexible declarative interface for creating interactive web-based
graphics, built upon the Bokeh visualization library. Plot rendering in rbokeh is done by using HTML canvas.
Rbokeh provides a lot mechanisms for interactivity and furthermore even complex plots can be built quickly
with a few simple commands.

The simplicity of rbokeh is shown in listing 3.6. In just a few lines of code it is possible to create a
scatterplot where hovering a data point leads to further information. In this case the user has to provide which
data shall be assigned to which axis, the data set itself, further attributes like the color scheme of the scatterplot
as well as defining which information shall be provided on hover. The result can be seen in figure 3.8.

Unfortunately rbokeh is still under development, thus making it a good package to develop a simple proto-
type quickly but if real production code is needed it is recommended to use another package.

1 library(rbokeh)
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2 figure() %>%
3 ly_points(Sepal.Length, Petal.Length, data = iris,
4 color = Species,hover = list(Sepal.Length, Petal.Length))

Listing 3.6: rbokeh sample code for producing a simple scatterplot using the Iris data set

Figure 3.8: Example of scatterplot drawn by using rbokeh package
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3.1.6 Plotly

Plotly is another package in R used to create interactive web-based plots with the help of the JavaScript library
plotly.js. In general Plotly runs locally in the web browser or in the R studio viewer and the graphs are rendered
through the htmlwidgets framework. Besides offline rendering it is also possible to publish plots to Plotly’s
web service and modify the data or share it with others to enable collaboration on graphs.

In listing 3.7 we recreated the same scatterplot as with rbokeh. The code is even shorter than in the previous
example, one has just to provide the data, allocating the data to the axes as well as specifying the color attribute.
Plotly also automatically provides information when the data points are hovered. The final result can be seen
in figure 3.9.

1 library(plotly)
2 plot_ly(data = iris, x = ~Sepal.Length, y = ~Petal.Length, color = ~Species)

Listing 3.7: Plotly sample code for producing a simple scatterplot using the Iris data set
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Figure 3.9: Example of scatterplot drawn by using Plotly package

3.2 Other R Packages for Interactive Data Visualization

While we researched on the most popular packages for interactive data visualization in R, discussed in the
previous chapter, we also came across some other packages which attracted our attention. Following we want
to give a brief introduction to rCharts and highcharter.

3.2.1 rCharts

The philosophy behind the rCharts package is to provide an easy way of creating, customizing and sharing
interactive visualizations. rCharts uses a lattice styled plotting interface, which is a formula interface to specify
plots. Furthermore the package supports multiple JavaScript charting libraries where it takes advantage of each
ones strength. Since each library has multiple options to customize a plot, rCharts supports most of these
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options. There are multiple ways to publish a visualization, either as a standalone page, embedded in a shiny
app or in a tutorial/blog post.

3.2.2 highcharter

Highcharter is a wrapper for the Highcharts library which includes shortcut functions to plot R objects. The
package consists of various chart types with the same style, e.g. scatter plots, line charts, bar charts etc. Only
one function - hchart(x) - is needed to create different R objects. Highcharter also supports Highstock and
Highmaps charts, where for example a candlestick chart can be created in two lines of code. Additionally it is
possible to customize charts since highcharter comes with a huge variety of themes as well as plugins.
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