
Data Visualisation on Mobile

Group 3

Hussain Hussain, Lukas Burgstaller, Peter Grassberger, Nikita Lvov

706.057 Information Visualisation SS 2018
Graz University of Technology

13 May 2018

Abstract

Today the number of mobile devices growing everyday significantly. In these terms it is very
important to optimize data visualizations for them. In first place comes scalability because the
final graphic must fit properly on a big variety of screen sizes and resolutions. There are two main
view modes on the devices – Landscape and Portrait. Therefore the end-image must scale across
the screen according to the view method. Modern mobile hardware is controlled by touchscreens
and most people are used to not only to see data but also interact with it. For example, the basic
interaction allows users to rotate diagrams to change its type. That is why it is also important to
adjust such functions as zooming, selection, etc. for comfortable usage. With the set of sensors
that are available on the devices there are a lot of additional possibilities of data visualization
possible. From another side here is the problem of lack of performance in comparison to desktop
PCs. Hence the data visualization on mobile devices should be lightweight or created with the
optimized frameworks.

© Copyright 2018 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents ii

List of Figures iii

List of Tables v

List of Listings vii

1 Introduction 1
1.1 Mobile Devices . 1
1.2 Responsive Design . 1
1.3 Data Visualisation on Mobile . 2

2 Technologies 3
2.1 Visualisation Rendering on the Web . 3

2.1.1 Responsive Web Technology . 3
2.2 Rendering on iOS . 4

2.2.1 Core Graphics . 4
2.2.2 OpenGL . 5
2.2.3 Content in UIWebView . 5
2.2.4 SVG . 5

2.3 Additional Native vs Web APIs . 5

3 Libraries 7
3.1 Web Libraries . 7

3.1.1 graph-scroll . 7
3.1.2 dygraphs . 7
3.1.3 earthjs . 7

3.2 Native Libraries . 9
3.2.1 Core Plot . 9
3.2.2 ScrollableGraphView . 9
3.2.3 FSInteractiveMap . 12
3.2.4 MPAndroidChart . 13
3.2.5 Charts (iOS) . 13

3.3 Comparison . 14

i

4 Design Tips 15
4.1 Design Mobile First . 15

4.2 Design the way people hold their mobiles . 15

4.3 Use gestures that are expected . 15

4.4 Hover States . 15

4.5 Mobile Context . 15

5 Design Examples 17
5.1 Responsive Example . 17

5.1.1 New York Times Map . 17

5.2 Vizable . 18

5.3 Hierarchy Visualization . 19

5.3.1 Voronoi tree map . 19

5.3.2 Sunburst . 19

5.3.3 Enhanced Radial Edgeless Tree (ERELT) . 20

5.4 Parallel Coordinates . 24

5.5 Interactive scatter plot . 25

Bibliography 27

ii

List of Figures

1.1 Content can be arranged differently for every device with responsive design. [Tomáš Procházka,

Creative Commons CC0 1.0] . 2

3.1 Landtagswahlen in Salzburg [Screenshot taken from website by Flooh Perlot.] 8

3.2 dygraphs time series chart [Screenshot taken from dygraphs website.] 8

3.3 Example of 3D Flight Line showing Import/Export quantities Harsojo 2017. [Screenshot taken by

the authors.] . 8

3.4 Range plot example from coreplot Skroch 2017 [Screenshot taken by the authors.] 10

3.5 Vertical bar chart example from coreplot Skroch 2017 [Screenshot taken by the authors.] 10

3.6 A bar chart example from ScrollableGraphView McKenna 2017. [Screenshot taken by the authors.] 11

3.7 An example from FSInteractiveMap. 12

3.8 An barchart example from MPAndroidChart. [Image is included in the project readme mpreadme2017] 13

5.1 New York Times Map Example: top side Desktop, bottom side mobile. [Screenshot taken from New

York Times website.] . 18

5.2 Examples of possible data visualizations and controls. [Screenshot taken from by the authors.] . . . 19

5.3 FoamTree Voronoi treemap visualization example on mobile Carrot Search 2012. [Screenshot

taken from the demo, FoamTree on mobile.] . 20

5.4 Highcharts sunburst visualization example on mobile showing the world population Highsoft
2009. [Screenshot taken from Highcharts sunburst demo.] . 21

5.5 Highcharts sunburst visualization example on mobile showing the population of Europe in the
context of the world population Highsoft 2009. [Screenshot taken from Highcharts sunburst demo.] . . 22

5.6 ERELT visualization of a sample music library segment (language, genre and artist levels) Ch-
hetri et al. 2015. The white arrows indicate the existence of hidden nodes in the corresponding
levels. Sliding such levels result in viewing the hidden nodes. [Screenshot taken by the authors.] . . 23

5.7 Parallel coordinates brushing examples. The pad in the bottom-right corner represents the fin-
gertips on the trackpad Kosara 2011. [Screenshots are taken by the authors] 25

5.8 Touch interactions with a scatter plot Sadana and Stasko 2014. [Pictures are designed by the authors.] 26

iii

iv

List of Tables

2.1 Comparison of additional Nativ vs. Web APIs . 6

3.1 Comparison among the mentioned native libraries . 14

v

vi

List of Listings

2.1 flexbox example . 3
2.2 mediaquery example with relative units . 4
2.3 javascript mediaquery example . 4
2.4 overwrite draw Core Graphics function . 4
2.5 GLKView: draw with OpenGL . 5
2.6 UIWebView: Use load HTML content to use javascript libraries 5
3.1 earthjs usage example . 9
3.2 ScrollableGraphView usage example . 11
3.3 ScrollableGraphView usage example . 11
3.4 FSInteractiveMap usage example . 12
3.5 Creating and adding the chart object Jahoda 2017a. 13
3.6 Adding data to the chart object Jahoda 2017a. 13
3.7 Charts usage example . 14

vii

viii

Chapter 1

Introduction

1.1 Mobile Devices

Mobile devices are computers that can be carried around, they can be hold and operated in ones hands. All
following aspects that mobile devices are known by follow this definition. They need to be small enough. They
have a touchscreen and do not require mouse or keyboard that would be used with PCs. In addition they can
also have some physical buttons.

Mobile devices are connected to the internet via wireless connections like 4G mobile broadband or WiFi
technology and to other devices via bluetooth. They are battery powered, aware of their orientation, motion and
geographical position. They include smartphones, tablets and smartwatches. Wikipedia 2018

Mobile devices are also used differently that other computers, they are used on the go. The environment that
the devices is used in changes together with the light situation, users might be distracted by her surroundings.

1.2 Responsive Design

As mentioned before, smaller sizes and therefore smaller screen sizes are what define mobile devices. The range
of sizes between smartwatches and tablets is large. The design pattern Responsive Design (or Responsive Web
Design) was established.

Responsive Design uses three techniques:

� Fluid grid: Grids are well known in graphics design for a long time, they divide the screen space up in
different areas of content. Fluid grids use relative units to fluidly adopt to different screen sizes.

� Relative units: All visual elements (text, images, the grid, etc.) need sizes and units for these sizes. There
are static and relative units. Relative units depend on some other size, for example a base font size or the
screen width or height.

� Break points: Break points are points on a scale that mark a change in design. Points can be a certain
screen width or height, when crossed some design aspects change based on this condition. Elements could
be hidden, shown, scaled or rearranged differently.

With these three techniques a designer can face the challenges that screens provide, but mobile devices are
more than only different screen sizes.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Content can be arranged differently for every device with responsive design. [Tomáš Procházka,
Creative Commons CC0 1.0]

1.3 Data Visualisation on Mobile

Responsive Design does not cover all aspect of mobile devices. Therefore this paper introduces the following
definition:

Data Visualisations on Mobile are data visualisations that adapt to the limitations and take advantage of
additional capabilities of mobile devices and how they are used.

Limitations could be different (mostly smaller) screen sizes. Additional capabilities are more inputs
(sensors) and outputs, like the touchscreen or orientation sensors. Mobiles devices are used differently than
other devices, users are on the go or otherwise distracted.

Chapter 2

Technologies

2.1 Visualisation Rendering on the Web

There are two main categories of rendering visualisations on the web: Scalable Vector Graphics (SVGs) and
HTML Canvas element rendering.

SVG is a vector based image file format that can be included in HTML websites like any other image
format. In addition SVGs can also be used inline within an HTML website, by using the SVG element with its
children elements as an HTML elements, excluding the SVG doctype. SVGs are styled with Cascading Style
Sheets (CSS) as HTML is styled, only with a different set of properties.

The HTML Canvas element comes in two variants: two- and three-dimenional (3D). The 3D option is Web
Graphics Library (WebGL) based and therefore allows GPU-acceleration.

Both SVG and canvas are elements within an HTML document. The HTML context can provide additional
information that supports the graphical content. HTML with CSS itself (excluding SVG and canvas) is very
powerful but should not be used to created visualisations.

2.1.1 Responsive Web Technology

The web technology stack is very well equipped for responsive design. There are standardized CSS selectors,
properties and units that can used. More elaborate solutions can be created with javascript.

Fluid grids can be created with the CSS properties flexbox and grid. Flexbox only supports 1-dimensional
(rows or columns) layouts, but multiple Flexboxes can be used to create elaborate layouts. The grid property
supports 2-dimensions (rows and columns) by itself. As of the time of writing CSS grid is still not as widely
supported by browsers as flexbox.

<div class="content">
<section>first section </section>
<section>secon section </section>

</div>
<style>
.content {

display: flex;
flex-direction: row;

}
</style>

Listing 2.1: flexbox example

3

4 CHAPTER 2. TECHNOLOGIES

CSS knows many different units, with the static unit of pixels px being widely known. Relative units are:
em, rem, vw, vh, \%. The former two are relative to font sizes, em relative to the font-size of the current element
and rem to the fonts size of the root element. The latter are relative to the screen width or height.

Break points can be created with the CSS3 Media Query selectors. In the following example the media
query responds to the maximum screen width of 50em. As long as the screen width stays smaller than 50em
the code within the brackets is active. Relative units are recommended in media queries.

@media (max-width: 50em) { /* adjust something here */ }

Listing 2.2: mediaquery example with relative units

Besides CSS, javascript can also be used to respond to different screen sizes. The following example shows
how one would selector for screens less wide that 800 pixels. Javascript itself cannot select for relative units
by itself, they would need to be calculated. For the sake of understandability absolute values are used in the
example. Going beyond responsive design, a lot more can be done with javascript.

if (screen.width < 800) { /* adjust something here*/ }

Listing 2.3: javascript mediaquery example

2.2 Rendering on iOS

2.2.1 Core Graphics

The easiest way to do 2D graphics on iOS is Core Graphics. CoreGraphics is a system library that is well
integrated and heavily used by the UIKit, iOS’ UI framework.

To draw on the screen you need to override the draw (_ rect: CGRect) method of the UIView you want to
draw in.

override func draw(_ rect: CGRect) {
let path = UIBezierPath(ovalIn: rect)
UIColor.green.setFill()
path.fill()

}

Listing 2.4: overwrite draw Core Graphics function

2.3. ADDITIONAL NATIVE VS WEB APIS 5

2.2.2 OpenGL

The second way to generate hardware accelerated graphics. iOS provides in the GLKit framework tools, most
notably the GLKView to integrate OpenGL code into the standard iOS user interface.

The GLKView works very similar to the standard UIView, in that you need to override the draw(_ rect:
CGRect) method, only that you can use OpenGL code to draw in this case.

- (void)drawRect:(CGRect)rect
{

// Clear the framebuffer
glClearColor(0.0f, 0.0f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Draw using previously configured texture, shader, uniforms , and
vertex array

glBindTexture(GL_TEXTURE_2D , _planetTexture);
glUseProgram(_diffuseShading);
glUniformMatrix4fv(_uniformModelViewProjectionMatrix , 1, 0,

_modelViewProjectionMatrix.m);
glBindVertexArrayOES(_planetMesh);
glDrawElements(GL_TRIANGLE_STRIP , 256, GL_UNSIGNED_SHORT);

}

Listing 2.5: GLKView: draw with OpenGL

2.2.3 Content in UIWebView

The third and recommended way is to rely on a UIWebView and load HTML content into the UI. This also
allows you to use more advanced libraries, since most visualisation libraries are written in Javascript.

private let webView = UIWebView()
webView.scrollView.isScrollEnabled = false
addSubview(webView)
webView.loadHTMLString(htmlString , baseURL: nil)

Listing 2.6: UIWebView: Use load HTML content to use javascript libraries

2.2.4 SVG

The final way to render custom graphics in iOS is to generate SVG code and load it into the UI, again using a
web view.

2.3 Additional Native vs Web APIs

Just about every native sensor input is available via javascript. Some of the APIs mentioned above need permis-
sion from the user to be accessed. Permissions are requested and granted in different ways and times depending
on platform, for mobile applications on installation and for websites on load or usage.

6 CHAPTER 2. TECHNOLOGIES

Web (javascript) Native (iOS) Native (Andriod)
Navigator.battery UIDevice BatteryManager

Navigator.geolocation Core Locatoin LocationManager
Navigator.connection Reachability CONNECTIVITY_CHANGE

MediaDevices.getUserMedia() AVFoundation MediaRecorder
Event Listeners Touch UIKit MotionEvent

Device Orientation API UIDevice WindowManager

Table 2.1: Comparison of additional Nativ vs. Web APIs

Chapter 3

Libraries

3.1 Web Libraries

There is a huge amount of web libaries for visualisations that can be freely used. This selection is limited to
libraries that explicitly state that they are made for mobile devices or mobile ready.

3.1.1 graph-scroll

graph-scroll is an scrolling events framework. With it events can be set on certain scrolling heights that trigger
design changes within a visualisation. It is d3.js version 4 based and MIT licensed.

3.1.2 dygraphs

dygraphs is a library that exclusively produces interactive and zoomable time series charts. It is d3.js version 4
based and MIT licensed.

3.1.3 earthjs

Earthjs is a JavaScript library for easy building orthographic globe. Framework giving 3D graphic visualization
experience. Originally was inspired by planetary.js (canvas) and Faux-3d Shaded Globe (SVG) and both were
created using D3-v3.

The globe itself is fully interactive. Zooming, rotating and selecting functions are available for users. The
layers of the globe are represented by combination of SVG, Canvas and Threejs.

SVG for quickly prototyping the globe as it used standard SVG DOM element so event and css can be
applied to each element. Canvas for more data point that need to be render and UX experience stay in good
shape. Interactivity or mouse detection are available for hovering, click and double click. detect country or
point of location. WebGL/Threejs is a way to go if eye catchy of globe is needed and lots of data, or want
to be better CPU utilization by moving some intensive calculation to GPU. Interesting Data Visualization can
be created by combining SVG, Canvas and Threejs(WebGL) like: choropleth globe using Canvas or Threejs,
heatmap globe by rendering heatmap on canvas and use that canvas as a texture in Threejs, flightLine to connect
two datapoint using Threejs and coloring target location (usually country) using Canvas. flashy bullet that travel
along the way of flightLine is there including the mouse event using Threejs.

Internal plugins library has a fair size and includes more than 60 plugins. Framework also have an oppor-
tunity for using self-created plugins. Plugins is a function created in "earthjs.plugins" namespace, return with
JavaScript object.

7

8 CHAPTER 3. LIBRARIES

Figure 3.1: Landtagswahlen in Salzburg [Screenshot taken from website by Flooh Perlot.]

Figure 3.2: dygraphs time series chart [Screenshot taken from dygraphs website.]

Figure 3.3: Example of 3D Flight Line showing Import/Export quantities Harsojo 2017. [Screenshot taken by
the authors.]

3.2. NATIVE LIBRARIES 9

earthjs.plugins.graticuleSimple = () => {
const grat = d3.geoGraticule(), $ = {};

function create() {
this._.svg.selectAll(’.graticule ’).remove();
$.grat = this._.svg.append("path").datum(grat).attr("class", "

graticule");
refresh.call(this);

}

function refresh() {
$.grat.attr("d", this._.path);

}

return {
name: ’graticuleSimple ’,
onCreate() {create .call(this);},
onRefresh() {refresh.call(this);}

}
}

//... plugin in use
const g = earthjs()
.register(earthjs.plugins.graticuleSimple())
.create();

Listing 3.1: earthjs usage example

Requirements for running this framework are:

• D3 version 4

• Topojson version 3

• Nodejs web-server or Python simple http server.

3.2 Native Libraries

3.2.1 Core Plot

Core Plot is one of the older chart libraries on iOS. In addition to iOS it also works on macOS and tvOS. Core
Plot renders the graphs using Core Graphics and supports Bar Charts, Line Charts, Candlestick Plots, OHLC
Plots, Range Plots, Donut Charts, and Pie Charts. It is designed to be very accurate, but simply setting up a
simple bar chart takes over 500 lines of code.

3.2.2 ScrollableGraphView

ScrollableGraphView offers nice animations and is very easy to use, but it only supports bar charts and line
charts.

To setup a graph you first implement a datasource object

10 CHAPTER 3. LIBRARIES

Figure 3.4: Range plot example from coreplot Skroch 2017 [Screenshot taken by the authors.]

Figure 3.5: Vertical bar chart example from coreplot Skroch 2017 [Screenshot taken by the authors.]

3.2. NATIVE LIBRARIES 11

Figure 3.6: A bar chart example from ScrollableGraphView McKenna 2017. [Screenshot taken by the authors.]

func value(forPlot plot: Plot, atIndex pointIndex: Int) -> Double {
// Return the data for each plot.
switch(plot.identifier) {
case "line":

return linePlotData[pointIndex]
default:

return 0
}

}

func label(atIndex pointIndex: Int) -> String {
return "FEB \(pointIndex)"

}

func numberOfPoints() -> Int {
return numberOfDataPointsInGraph

}

Listing 3.2: ScrollableGraphView usage example

Once you have a datasource object, you need to create a graph view object and add the plot.

let graphView = ScrollableGraphView(frame: frame, dataSource: self)

let linePlot = LinePlot(identifier: "simple") // Identifier should be
unique for each plot.

let referenceLines = ReferenceLines()

graphView.addPlot(plot: linePlot)

12 CHAPTER 3. LIBRARIES

Figure 3.7: An example from FSInteractiveMap.

graphView.addReferenceLines(referenceLines: referenceLines)

Listing 3.3: ScrollableGraphView usage example

3.2.3 FSInteractiveMap

FSInteractiveMap is a simple SVG viewer that can react to touch events. It only supports parts of the SVG
spec, but enough to display simple maps with only a couple lines of code

[map loadMap:@"world-continents -low" withData:data colorAxis:@[[UIColor
lightGrayColor], [UIColor darkGrayColor]]];

[map setClickHandler:^(NSString* identifier , CAShapeLayer* layer) {
// Clicked on identifier

}];

Listing 3.4: FSInteractiveMap usage example

3.2. NATIVE LIBRARIES 13

Figure 3.8: An barchart example from MPAndroidChart. [Image is included in the project readme mpreadme2017]

3.2.4 MPAndroidChart

It supports line charts, bar charts, pie charts, scatter plots, candle stick charts, bubble charts and radar charts.

To create a bar chart you first create the chart object and add it to the UI

// programmatically create a LineChart
LineChart chart = new LineChart(Context);

// get a layout defined in xml
RelativeLayout rl = (RelativeLayout) findViewById(R.id.

relativeLayout);
rl.add(chart); // add the programmatically created chart

Listing 3.5: Creating and adding the chart object Jahoda 2017a.

After that you simply add the datapoints one by one

for (YourData data : dataObjects) {

// turn your data into Entry objects
entries.add(new Entry(data.getValueX(), data.getValueY()));

}

Listing 3.6: Adding data to the chart object Jahoda 2017a.

3.2.5 Charts (iOS)

Charts for iOS Jahoda 2017b is a port of MPAndroidChart and uses almost the same API, just modified to work
with Swift / Objective-C.

14 CHAPTER 3. LIBRARIES

let entry1 = BarChartDataEntry(x: 1.0, y: Double(number1.value))
let entry2 = BarChartDataEntry(x: 2.0, y: Double(number2.value))
let entry3 = BarChartDataEntry(x: 3.0, y: Double(number3.value))
let dataSet = BarChartDataSet(values: [entry1, entry2, entry3], label:
"Widgets Type")

let data = BarChartData(dataSets: [dataSet])
let data = PieChartData(dataSet: dataSet)
pieChart.data = data
pieChart.chartDescription?.text = "Share of Widgets by Type"

Listing 3.7: Charts usage example

3.3 Comparison

NAME LICENSE PLATFORM EASE OF USE
Core Plot BSD License iOS, Mac, tvOS Difficult

ScrollableGraphView MIT License iOS Easy
FSInteractiveMap Apache License 2.0 iOS Easy
MPAndroidChart Apache License 2.0 Android Easy

Charts Apache License 2.0 iOS Easy

Table 3.1: Comparison among the mentioned native libraries

Chapter 4

Design Tips

4.1 Design Mobile First

When designing for multiple screen sizes, it’s best to start designing for mobile and small screens first to avoid
Information overload.

Once you have designs for small screens you can continue with adding more information for larger screens,
since mobile covers a lot of different screen sizes.

4.2 Design the way people hold their mobiles

People hold their phones 99% of the time vertically (Sparkes 2016) and people have no problem with scrolling.
So design vertically. Libraries like graph-scroll help a lot when designing vertical visualisations with scroll
interactions.

4.3 Use gestures that are expected

Gestures are a great way to add additional features to touch UIs. However most gestures are hard to find,
and people generally do not search to find gestures. Two exceptions are the swipe gesture to scroll content,
especially if the content is cut off, to indicate scrollability, and the pinch to zoom gesture.

4.4 Hover States

Touch Screen do not support hover states, and you can not expect people to tap too much. If you have important
information do not hide it in tooltips, instead think about what information is important and always show the
important information without any extra actions.

4.5 Mobile Context

Remember that mobile is not only about the device, but also about the context it’s used in. People may use the
app on the go, while having to watch out for traffic, so don’t expect a long attention span. They might use the
app outside, with the sun (or other light sources) reflecting in the screen, so don’t expect them to notice small
differences in colors and use higher contrasts.

15

16 CHAPTER 4. DESIGN TIPS

Chapter 5

Design Examples

5.1 Responsive Example

5.1.1 New York Times Map

The New York times and other newspapers use SVGs for their information graphics. For the following example
they use a toolkit called ai2html that turn Adobe Illustrator files into a combination of SVG and HTML code,
that work for different screen sizes. Cedric 2018

17

18 CHAPTER 5. DESIGN EXAMPLES

Figure 5.1: New York Times Map Example: top side Desktop, bottom side mobile. [Screenshot taken from New
York Times website.]

5.2 Vizable

Visable is a tool for iOS platform developed by Tableau that allow users to transform data into interactive charts
and graphs by importing from files, services or cloud. One of the other features is the sharing the data stories
within static image or interactive VIZ file. Interface itself is pretty simple - there are no configuration screens,
wizards, or chart builders. Visable provides a lot of interactive functions, optimized for touchscreen, which
allow user fully control the process of building data visualizations:

• Adding columns by pinching out to add or pinching in to remove

• Changing calculations by flick

• Selecting the intervals by tapping and dragging

• Changing required fields by swiping them left and right

• Filtering categories by swiping to left to remove and right to focus

5.3. HIERARCHY VISUALIZATION 19

Figure 5.2: Examples of possible data visualizations and controls. [Screenshot taken from by the authors.]

5.3 Hierarchy Visualization

Hierarchy visualization (or tree visualization) targets the representation of connected, acyclic graphs Schulz
2011. Examples for such visualizations include the visualization of disk space usage, file systems, etc. Hier-
archies are mostly represented as lists in mobile devices where the view corresponds to a certain node and the
options of navigation are limited to going back to the parent node view or selecting one child, that means no
direct connection to the siblings, and no appearance of descendants rather than the direct children, e.g. files
explorers, media navigators.

5.3.1 Voronoi tree map

Voronoi tree maps idea is the space-filling recursive subdivision of a given area without producing holes or
overlappings. It offers low aspect ratios, better interpretability of hierarchical structures, and flexible adaptab-
ility regarding the enclosing shape. Balzer and Deussen 2005 The hierarchy is assumed to be attributed, which
means that each node in the hierarchy has a value represented by its size on the tree map. Balzer and Deussen
2005 We assume that this attribute needs to be aggregated from the sub-tree of the corresponding node.

A practical example comes from FoamTree, a JavaScript tree map visualization with innovative layout
algorithms and animations. It works both on desktop and mobile and it supports the touch interactions (tapping,
scaling, panning). Carrot Search 2012

The advantage of such a design is that it uses up the whole screen space and allows the user to navigate
conveniently between nodes using the intuitive gestures such as pinching for zooming in or out and tapping to
focus on a certain node or to dive a step down the tree.

Figure 5.3 shows the FoamTree mobile demo in a web browser on a mobile phone presenting a hierarchy
for some data mining topics. The figure to the left shows an overall view of the data, while the figure to the
right shows the visualization after focusing on ’Data Mining Tools’ node where the node takes up as much from
the screen size as possible, gets a bit magnified with respect to the other nodes and its children become more
obvious.

5.3.2 Sunburst

According to The Data Visualisation Catalogue no date , sunburst visualisation shows hierarchy through a
series of rings, that are sliced for each category node. Each ring corresponds to a level in the hierarchy, with
the central circle representing the root node and the hierarchy moving outwards from it.

20 CHAPTER 5. DESIGN EXAMPLES

Figure 5.3: FoamTree Voronoi treemap visualization example on mobile Carrot Search 2012. [Screenshot
taken from the demo, FoamTree on mobile.]

For sunburst chart, we include an demo from Highcharts Highsoft 2009, a SVG-based, multi-platform
charting library used to add interactive, mobile-optimized charts to web and mobile projects. The example in
figure 5.4 shows a sunburst visualization of the world population in 2017 divided level by level into continents,
regions and countries.

The navigation options here include drilling down a node by tapping on it, so the sunburst view now
corresponds to its subtree and the title of the chart will be the label of this node. Tapping on that title or on the
root node in the center rolls up the view and climbs one level up the tree.

The problem with this type of visualization is that it leaves holes since the whole shape is circular on a
rectangular screen. Another problem is the labelling of each node given that the screen size is small and so are
the nodes.

A workaround would be including only a limited number of levels in the view, e.g. 3 levels would be
convenient enough (the parent node in the center, the siblings in the second level, and their children in the third
one). Given the navigation options, whenever we drill down a node, it becomes the parent (in the center) and
the same mentioned pattern applies for it. This can provide good local views of the tree, and enable better
labelling. Figure 5.5 shows the same visualization after drilling down to the node ’Europe’. It shows the title as
mentioned ’Europe’ and the labelling seems less of a problem because of the bigger sizes for nodes. Still there
is so much space that should be used.

5.3.3 Enhanced Radial Edgeless Tree (ERELT)

Introduced in Chhetri et al. 2015, ERELT offers a clear visualization of any tree structure with intuitive inter-
action. It is another space-filling hierarchy browser which has no holes or overlaps between nodes.

5.3. HIERARCHY VISUALIZATION 21

Figure 5.4: Highcharts sunburst visualization example on mobile showing the world population Highsoft
2009. [Screenshot taken from Highcharts sunburst demo.]

The screen is divided into rectangles (one inside the other). The innermost rectangle lies in the top-left
corner and represents the root of the subtree presented at the moment. The next level in the subtree lies in the
area between the innermost rectangle and the one containing it, which is also aligned to the top-left corner and
so on. Each level is divided with radial lines starting from top-left corner. Further design details were discussed
in Chhetri et al. 2015 in order to make the view more optimized and convenient.

An example is shown in figure 5.6, where we can see how the screen is divided and how each level is
divided. We may notice the that the text orientation is aligned with the radial lines emitted from the top-left
corner, which gives an optimized space for labelling and also a feeling that the contents originate from the root
node.

The number of levels appearing on the screen adapts to the screen size. Besides, the number of nodes
appearing in a single level adapts to the screen size. Moreover, a branching limit is set so that no node shows
more than a certain number of direct descendants, e.g. 3 children. However, this may leave some nodes of a
shown level hidden although their siblings are not. Whenever this happens, arrows appear on the corresponding
nodes, indicating that we can scroll in the direction of the arrow to continue viewing the hidden nodes which,
by this gestures, replace the shown nodes. This is in addition to the drill-down and roll-up operations, that were
mentioned in 5.3.2 and were applied in the same manner in this visualization.

22 CHAPTER 5. DESIGN EXAMPLES

Figure 5.5: Highcharts sunburst visualization example on mobile showing the population of Europe in the
context of the world population Highsoft 2009. [Screenshot taken from Highcharts sunburst demo.]

5.3. HIERARCHY VISUALIZATION 23

Figure 5.6: ERELT visualization of a sample music library segment (language, genre and artist levels) Ch-
hetri et al. 2015. The white arrows indicate the existence of hidden nodes in the corresponding
levels. Sliding such levels result in viewing the hidden nodes. [Screenshot taken by the authors.]

24 CHAPTER 5. DESIGN EXAMPLES

5.4 Parallel Coordinates

Parallel coordinates visualization is a method to visualize multidimensional numerical data. It uses equidistant
parallel vertical lines which represent the axes of a multidimensional space (one vertical line for each dimen-
sion). Each object is plotted as a polyline defined by values along each dimension. InfoVisNotes

With these plots, we can recognize patterns in data, and analyze the behavior of a subset of data that satisfy
a certain predicate.

When showing such visualization on a small screen, only a small number of axes can be easily mapped and
navigated, so an idea would be to adapt the number of shown axes to the screen size and try to show the most
relevant dimensions by doing so while giving the user the ability to choose the axes and their number at the
same time.

We include an example for parallel coordinates visualization on mobile devices, which makes use of the
multi-touch feature in most modern touch devices. Kosara 2011 It deals specifically with the brushing operation,
which usually means selecting a range of values on one or more axes Inselberg 2009. In addition, there is the
angular brushing operation in which the user selects a sub-set of slopes between two axes and the focus then
turns to the objects whose slope between the corresponding axes belongs to the selected subset Hauser et al.
2002.

Next, we will discuss the three types of brushing included in Kosara 2011. The authors use a separated
multi-touch trackpad rather than the screen itself so that the fingers don’t cover the view. However, we may
assume that such design option can be applied only with the touch screen without the trackpad. These examples
makes more sense to hold the device in a horizontal orientation.

Brush on One Axis After selecting a certain axis, one can use two fingers to specify a range on that axis,
and the brush operation will be interactively conducted upon that. The example for that is shown in

Brush on Two Axes This can be viewed as an extension to applying brush on one axis. Selecting two
ranges on two different axes requires two fingers for each axis (four in total). The intersection of the two
brushing operations on both axis is the result. The selected axis do not have to be adjacent.

Angular Brushing This operation requires three fingers, one finger on a certain axis, and the two others on
an adjacent one. The absolute positions of the fingers does not matter here. What specifies the selection is
their relative position, namely the range of slopes that lies between the two slopes from the single fingertip on
one axis to both of the other two fingertips on the other axis. This allows to brush different kinds of correlations
since it relies on brushing by direction rather than location Kosara 2011.

5.5. INTERACTIVE SCATTER PLOT 25

(a) One-axis brushing with two fin-
gers.

(b) Two-axis brushing with four fin-
gers.

(c) Angular brushing with three fin-
gers.

Figure 5.7: Parallel coordinates brushing examples. The pad in the bottom-right corner represents the
fingertips on the trackpad Kosara 2011. [Screenshots are taken by the authors]

5.5 Interactive scatter plot

A scatter plot shows the distribution of data points on a two-dimensional Cartesian plane based on two numeric
attributes. It helps in recognizing correlations between data objects with respect to the corresponding attributes.
The idea can be generalized to include not only one variable. For example the colors and the shapes of the
points may represent other (probably non-numeric attributes).

The usual interaction for such plots on touch devices is to make additional information pop up upon tapping
on a certain point. This sort of interaction could be seen as inconvenient since it covers other data points until
the user chooses to defocus or after a certain amount of time. The reason for this solution could be the attempt
to find an alternative for the hoover status which is not supported by touch devices in general.

However, many other design and interaction alternatives can be applied to make scatter plots easily explor-
able on touch devices of different sizes. Here we look at an example implemented in Sadana and Stasko 2014
which includes a variety of ways to manipulate scatter plots on a touch device.

Choosing the attributes is up to the user where they can even see both plots (with two different choices of
a certain attribute) at the same time giving two different colors for the two plots while choosing. Figure 5.8a
shows the process of attribute selection.

Selecting a subset of the data points can be also touch friendly whether it was free drawing of a closed
shape to specify the region of interest or using orthogonal selection. The selected data can then be filtered out
or retained. There is also a choice to give more detailed information about the selected subset i.e. with respect
to the attributes not included in the plot. This is shown as tabular information; see figure 5.8b.

Zooming can be done on a single axis pinching on it (figure 5.8c), which could be viewed as more accurate,
as well as using intuitive gestures such as double tapping somewhere on the plane. Besides, one can use
zooming lens to gain local zooming by pinching on the corresponding region and can control how much it
should be magnified (figure 5.8d).

26 CHAPTER 5. DESIGN EXAMPLES

(a) Choosing the attributes. (b) Detailed tabular information.

(c) Zooming on a single axis. (d) Zoom lens.

Figure 5.8: Touch interactions with a scatter plot Sadana and Stasko 2014. [Pictures are designed by the authors.]

Bibliography

Balzer, Michael and Oliver Deussen [2005]. “Voronoi Treemaps”. Proceedings - IEEE Symposium on Informa-
tion Visualization, INFO VIS InfoVis 05 [2005], pages 49–56. ISSN 1522404X. doi:10.1109/INFVIS.2005.
1532128 (cited on page 19).

Carrot Search [2012]. FoamTree 3.4.5. 2012. https://carrotsearch.com/foamtree/ (cited on pages 19–20).

Cedric, Sam [2018]. “Ai2html and Its Impact on the News Graphics Industry”. In: (Montréal, Canada). Apr
2018. https://mobilevis.github.io/assets/mobilevis2018_paper_20.pdf (cited on page 17).

Chhetri, Abhishek P., Kang Zhang and Eakta Jain [2015]. “A mobile interface for navigating hierarchical in-
formation space”. Journal of Visual Languages and Computing 31 [2015], pages 48–69. ISSN 1045926X.
doi:10.1016/j.jvlc.2015.10.002. http://dx.doi.org/10.1016/j.jvlc.2015.10.002 (cited on pages 20–21,
23).

Harsojo, Widi [2017]. Earth JS. 2017. https://github.com/earthjs/earthjs (cited on page 8).

Hauser, Helwig, Florian Ledermann and Helmut Doleisch [2002]. “Angular brushing of extended paral-
lel coordinates”. In: Information Visualization, 2002. INFOVIS 2002. IEEE Symposium on. IEEE. 2002,
pages 127–130 (cited on page 24).

Highsoft [2009]. Highcharts. 2009. https://www.highcharts.com/products/highcharts/ (cited on pages 20–22).

Inselberg, Alfred [2009]. “Parallel coordinates”. In: Encyclopedia of Database Systems. Springer, 2009, pages 2018–
2024 (cited on page 24).

Jahoda, Philipp [2017a]. MPAndroidChart Getting Started. 2017. https://github.com/PhilJay/MPAndroidChart/
wiki/Getting-Started (cited on pages vii, 13).

Jahoda, Philipp [2017b]. MPAndroidChart readme. 2017. https://github.com/PhilJay/MPAndroidChart (cited
on page 13).

Kosara, Robert [2011]. “Indirect multi-touch interaction for brushing in parallel coordinates”. Visualization
and Data Analysis 2011 7868 [2011], pages 786809–786809–7. ISSN 0277-786X. doi:10.1117/12.872645.
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.872645 (cited on pages 24–
25).

McKenna, Phillip [2017]. ScrollableGraphView. 2017. https://github.com/philackm/ScrollableGraphView
(cited on page 11).

Sadana, Ramik and John Stasko [2014]. “Designing and implementing an interactive scatterplot visualization
for a tablet computer”. Proceedings of the 2014 International Working Conference on Advanced Visual
Interfaces - AVI ’14 [2014], pages 265–272. doi:10.1145/2598153.2598163. http://dl.acm.org/citation.
cfm?id=2598153.2598163 (cited on pages 25–26).

Schulz, Hans Jörg [2011]. “Treevis.net: A tree visualization reference”. IEEE Computer Graphics and Applic-
ations 31.6 [2011], pages 11–15. ISSN 02721716. doi:10.1109/MCG.2011.103 (cited on page 19).

27

http://worldcatlibraries.org/wcpa/issn/1522404X
http://dx.doi.org/10.1109/INFVIS.2005.1532128
http://dx.doi.org/10.1109/INFVIS.2005.1532128
https://carrotsearch.com/foamtree/
https://mobilevis.github.io/assets/mobilevis2018_paper_20.pdf
http://worldcatlibraries.org/wcpa/issn/1045926X
http://dx.doi.org/10.1016/j.jvlc.2015.10.002
http://dx.doi.org/10.1016/j.jvlc.2015.10.002
https://github.com/earthjs/earthjs
https://www.highcharts.com/products/highcharts/
https://github.com/PhilJay/MPAndroidChart/wiki/Getting-Started
https://github.com/PhilJay/MPAndroidChart/wiki/Getting-Started
https://github.com/PhilJay/MPAndroidChart
http://worldcatlibraries.org/wcpa/issn/0277-786X
http://dx.doi.org/10.1117/12.872645
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.872645
https://github.com/philackm/ScrollableGraphView
http://dx.doi.org/10.1145/2598153.2598163
http://dl.acm.org/citation.cfm?id=2598153.2598163
http://dl.acm.org/citation.cfm?id=2598153.2598163
http://worldcatlibraries.org/wcpa/issn/02721716
http://dx.doi.org/10.1109/MCG.2011.103

28 BIBLIOGRAPHY

Skroch, Eric [2017]. CorePlot Example Graphs. 2017. https://github.com/core- plot/core- plot/wiki/
Example-Graphs (cited on page 10).

Sparkes, Sophie [2016]. My top 5 mobile design tips. 2016. http://www.datasparkes.com/data-sparkes/2016/8/
22/my-top-mobile-design-tips (cited on page 15).

The Data Visualisation Catalogue. Sunburst Diagram. https://datavizcatalogue.com/methods/sunburst%7B%5C_
%7Ddiagram.html (cited on page 19).

Wikipedia [2018]. Responsive web design. 1st Jun 2018. https://en.wikipedia.org/wiki/Responsive_web_
design (cited on page 1).

https://github.com/core-plot/core-plot/wiki/Example-Graphs
https://github.com/core-plot/core-plot/wiki/Example-Graphs
http://www.datasparkes.com/data-sparkes/2016/8/22/my-top-mobile-design-tips
http://www.datasparkes.com/data-sparkes/2016/8/22/my-top-mobile-design-tips
https://datavizcatalogue.com/methods/sunburst%7B%5C_%7Ddiagram.html
https://datavizcatalogue.com/methods/sunburst%7B%5C_%7Ddiagram.html
https://en.wikipedia.org/wiki/Responsive_web_design
https://en.wikipedia.org/wiki/Responsive_web_design

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Mobile Devices
	1.2 Responsive Design
	1.3 Data Visualisation on Mobile

	2 Technologies
	2.1 Visualisation Rendering on the Web
	2.1.1 Responsive Web Technology

	2.2 Rendering on iOS
	2.2.1 Core Graphics
	2.2.2 OpenGL
	2.2.3 Content in UIWebView
	2.2.4 SVG

	2.3 Additional Native vs Web APIs

	3 Libraries
	3.1 Web Libraries
	3.1.1 graph-scroll
	3.1.2 dygraphs
	3.1.3 earthjs

	3.2 Native Libraries
	3.2.1 Core Plot
	3.2.2 ScrollableGraphView
	3.2.3 FSInteractiveMap
	3.2.4 MPAndroidChart
	3.2.5 Charts (iOS)

	3.3 Comparison

	4 Design Tips
	4.1 Design Mobile First
	4.2 Design the way people hold their mobiles
	4.3 Use gestures that are expected
	4.4 Hover States
	4.5 Mobile Context

	5 Design Examples
	5.1 Responsive Example
	5.1.1 New York Times Map

	5.2 Vizable
	5.3 Hierarchy Visualization
	5.3.1 Voronoi tree map
	5.3.2 Sunburst
	5.3.3 Enhanced Radial Edgeless Tree (ERELT)

	5.4 Parallel Coordinates
	5.5 Interactive scatter plot

	Bibliography

