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Abstract

By representing graphs in an adjancy matrix it is possible to observe special patterns and reveal
dependencies which might not be seen in the graph per se. By combining the benefits of both
the matrix representation and the graph itself, a very powerful approach of graph analysis may be
achieved.

In this survey we present some potent techniques applicable to adjacency matrices to analyze
graphs. Furthermore, we present some tools utilizing these techniques.
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Chapter 1

Basics

This chapter explains the different types of graphs and their corresponding matrices, which techniques are used
on matrices and how to interpret the resulting patterns.

1.1 Definitions

In mathematics a graph is an ordered pair G = (V, E) containing a set of nodes V and a set of edges E. However,
some literature refers to nodes as “vertices" (thus the V) or “points". Edges may be called “arc" or lines. On
the other hand, in the case of a directed graph, edges may also be called arrows. Moreover:

• V is not allowed to be empty

• E is allowed to be empty

• The order of a graph is the number of vertices |V |

• The size of a graph is the number of edges |E|

In this paper, every node in the graph has its distinctive unique id, which never changes. This holds for
the reordering of the matrices too - when reordering rows and columns, the corresponding index stays with the
column, otherwise the graph would be changed with this operation.

1.2 Types of Graphs

Basically, there are two types of edges (directed and undirected) and two types of cost calculations (weighted
and unweighted), which leads to 4 different graphs. Figure 1.1 shows these 4 different types of graphs.

1.2.1 Directed/Undirected

Undirected edges may be traversed in any direction, whereas directed edges may just be traversed in one
direction. For matrix representation of graphs, neither the mathematical quiver, a directed graph which has
multiple arrows pointing from node x to y, nor the multigraph, a graph which contains multiple undirected
edges connecting just two nodes, is used.

1.2.2 Weighted/Unweighted

Graphs without costs defined for their edges, so called unweighted graphs, may be processed differently:

• Either the algorithm searches for the shortest path, thus defining a uniform cost on all edges

• Or there is no cost calculation at all, even the amount of edges is ignored

1



2 CHAPTER 1. BASICS

Figure 1.1: 4 different types of graphs (top: weighted directed and undirected, bottom: unweighted direc-
ted and undirected)[Figure created by an author of this thesis using GoogleDraw.]

When adding weights to the edges, the graph is called a weighted graph. These weights typically represent
different things, for example:

• time

• length

• energy consumption

• elevations

to name just a few.
With weights defined on the edges, the approaches of algorithms are different, as the shortest path, in despite

of number of traversed edges, is not necessarily the cheapest one.

1.3 Use cases

Some use cases of the different graph types are (to name just a few examples):

• Navigation system (weighted directed)

– Nodes: cities/POIs

– Edges: routes directed (one way streets)

* weights
· length of street (find shortest way)
· time to traverse the street (find fastest way)

• Subway map (undirected unweighted)

– Nodes: stations
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– Edges: connections between stations

• Relations of tweets (directed unweighted)

– Nodes: single tweet entry

– Edges: references to other tweets

1.4 Matrix Representation of Graphs

When representing graphs in a matrix, an adjacency matrix is used. Adjacency matrices are structured with
every row and every column representing one node. This leads to an N x N square matrix, where N is the
number of nodes.

These matrices show some patterns according to their corresponding graph but most times these patterns are
not immediately visible. There are some techniques to reveal these patterns, all of them involving the reordering
of the matrix.

1.4.1 Reordering

The main goal of reordering the matrix is to cluster the edges and thus reveal certain patterns. An example of
this behavior can be seen in figure 1.2.

When reordering the matrix, the indices of the single rows and columns stay with the rows, otherwise the
graph would change by this work step. In this example, at first the rows 1 and 4 get swapped and as a second
step columns 2 and 4. In this way the full connection pattern of the two subgraphs may be observed.

Figure 1.2: Reordering a matrix[Figure created by an author of this thesis using GoogleDraw.]

1.4.2 Patterns

There are 4 main patterns which may be revealed by reordering the matrix. These patterns can be combined in
such a way, that for example a sub graph creates a circle, but one node if it is connected to every other node.
This results in a combination of the star and the circle pattern. The four different patterns can be seen in the
corresponding figures 1.3.



4 CHAPTER 1. BASICS

Figure 1.3: 4 differnet patterns: star, full, circle and line[Figure created by an author of this thesis using GoogleDraw.]



Chapter 2

Scalability

Graph visualizations are always limited by the number of nodes, as well as the number of edges. The patterns in
figure 1.3 can only be recognized if completely visible, therefore the whole adjacency matrix must be visible to
find all of them. Otherwise, patterns may not be entirely visible. This chapter gives an overview of the scalabil-
ity of adjacency matrices, by estimating the upper limit of nodes in fully visible adjacency matrix visualizations,
explaining the problems of non fully visible matrix visualizations, and reviewing the implementations ’Matrix
zoom’ [van Ham, 2003; Abello and F. Van Ham, 2004] and Nodetrix [Henry et al., 2007].

2.1 Maximum number of Nodes

A short best case estimation will show the scalability limits of fully visible adjacency matrix visualizations.
Assuming all patterns should be recognizable, the whole matrix must be visible at once. Given a screen size of
25”, the number of nodes depends on the size of column, row and cell. The number of displayable edges is in
adjacency matrices always |nodes|2.

Size of cells, rows and columns is determined by their requirements. Pure visibility, operability, or perman-
ently visible node labels or edge weights (cell labels) require increasingly more space. If only a visible mark is
required for an edge, one pixel is the lower limit for the mark’s size, otherwise marks can not be associated to
the source or destination edge. High resolution screens do not increase the maximum number of nodes, since it
is getting very hard to follow the grid lines to other nodes. Therefore, more than 3000 nodes on a screen seem
to cause an unreadable visualization.

Mouse interactions like ‘on hover tooltips’ will add the option to identify source and destination nodes
of an edge, but will also use more space and restrict the maximum number of nodes. This will shrink the
maximum number of nodes to 300. If edge – node association is an important task, permanently visible node
labels in header will allow an interaction-less visualization of the graph. Additional space for labels reduces
the maximum node count to 30.

25" screen max nodes max edges
Pixel grid 3000 107

Interactive cell or header 300 105

Labeled cell or header 30 103

Table 2.1: Estimated Upper limit of nodes on a 25" screen for fully visible adjacency matrix visualizations.

5



6 CHAPTER 2. SCALABILITY

2.2 Simple Zooming

Putting an adjacency matrix in a zoom box obviously increases the maximum number of nodes. When zoomed
in, the readability of node and cell labels increases, but patterns may not be completely visible anymore. This
requires the user to search the matrix by panning. When zoomed out, labels are not readable anymore and
interactions with cells are impossible due to their small size.

The following two section review Matrix zoom, a zoomable matrix visualization which avoids these prob-
lems for clustered graphs. A general solution, without using known additional properties of the graph like its
clusters, was not found in the survey.

2.3 Matrix Subdivision

Matrix zoom is a zoomable matrix visualization tool [van Ham, 2003]. It solves the label readability problem by
finding new labels for groups of nodes or edges when zoomed out. It comes with a default data set, describing
a software repository. The nodes of the actual graph are function declarations and function calls of the source
code, so it is the complete call graph of a software project. Classes, packages and layers are considered as
clusters of the graph.

When node labels get too small to be read, they form groups based on their containing classes, these groups
are labeled with the class name. Multiple classes are represented by packages and so on. When edge marks get
too small, an n × m block of edge marks is transformed to one cell, by calculating the density of the block and
associating the cell color to it.

Figure 2.1: Cell and header transformations.
[Image taken from [van Ham, 2003].]

2.3.1 Cell and Header Transformations

In general, this concept needs a way to transform blocks of labels to one label. The given example fits well to
this requirement, since classes are packages and thus clusters and have human readable names. If the graph is
clustered by algorithms, meaningful names of clusters must be found, see figure 2.1.

If other header visualization techniques are used, the transformation must be adapted, see Chapter 5. For
example, if in or out degrees are visualized in the header, the average degree might be visualized by the group.

Transforming cell blocks to a single cell can be done in various ways. If just the existence of an edge is
relevant, the group cell may be rendered like an edge if at least one edge is in the cluster. Average weight,
density or degree may also be relevant. Which of these transformations should be used is dependent on the
requirements of the application, however, only one can be chosen.

This concept is suitable for recursive clustering, where each cluster is a zoom level. An extended version
of Matrix zoom [Abello and F. Van Ham, 2004] uses tree structures in the matrix headers for better navigation,
see figure 2.2.
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Figure 2.2: Cluster tree visualized in matrix header for better navigation.
[Image taken from Phd. thesis [F. J. J. Van Ham, 2005]]

2.3.2 Sorting and Clustering

The ‘edge mark in invisible area’ problem is reduced by the clustering, since most connections are within the
cluster, it is less likely to have invisible edge marks if zoomed to a cluster. See figure 2.3. The quality of this
reduction depends on the chosen clustering algorithm and the sort algorithm, see figure 1.2. In general the
cluster algorithm is executed first, and the order algorithm is applied to the elements within the cluster, and then
to the clusters themselves.

This concept can not be applied always. In best case the data set gives a natural cluster tree like the software
repository. Otherwise, a suitable cluster algorithm must be found, as well as human readable labels for those
automatically generated clusters. It should be considered as data preprocessing, since it may be applied to large
data sets.

2.4 Hybrid Representation

Nodetrix is a graph adjacency matrix hybrid. Adjacency matrices are better suited for dense graphs, so the idea
of Nodetrix is to replace unreadable dense sub clusters in traditional graph visualizations with adjacency matrix
visualizations. Figure 2.4 shows a traditional graph, with a dense green cluster. It is hard to find the nodes of an
edge in the traditional view on the left. On the right side the dense sub cluster is replaced by a better readable
adjacency matrix. Edges out of the cluster are rendered as lines to the nodes in the traditional graph view, or
other matrix views, and are therefore always visible [Henry et al., 2007].
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Figure 2.3: Typical matrix subdivision view of Matrix zoom.
[Image taken from the Phd. thesis [F. J. J. Van Ham, 2005]]

Figure 2.4: Nodetrix with traditional graph view, enhanced with adjacency matrix view.
[Screenshot created an author of this thesis using Nodetrix [Henry et al., 2007]]



Chapter 3

Cell Visualization Techniques

3.1 What to Visualize in Cells?

Often graph node links contain additional data, besides their connected nodes and weight, for example the
textual description.

On the one hand, there is the more common case in which the cell simply represents the connection between
two nodes by filling the cell. If the input is a weighted graph, this information is often extended by the edge
weights. Given the case that the input graph is undirected, the matrix forms a symmetric pattern along the
diagonal.

On the other hand, the cell can also represent data of a node, for example the affiliation to a specific cluster
or the similarity to nodes from other clusters or the local neighborhood. Most tools provide the possibility to
highlight the current selection in the matrix.

3.2 How to visualize it in cells?

Connections are most of the time shown in a black-white scheme, where black means that there is a connection,
and accordingly white shows, that there is none. The current selection is then highlighted by increasing the
transparency of the not-selected cells or simply setting them to gray. The logical next step from this is the
extension to a wider color scheme, so that for example weights can be represented by different color grades,
additionally with text as a fallback. If this scale is discrete, there is also the possibility to display icons or
textures instead of color grades. If the data to be visualized is more exotic, like the similarity of nodes in the
local neighborhood, this could be displayed as bar charts or histograms inside the cells. A matrix cell can
even include another matrix and represent the according sub-cells. This technique is mainly used to simplify
complex and large matrices.

3.3 Example: Nodetrix

In the matrix representation of Nodetrix in figure 3.1 it can be seen, that connections are shown as black cells
and the color in the matrix diagonal visualizes the affiliation to a specific cluster in the graph. The matrices
in Nodetrix have a hover effect, which highlights the row and column of the currently selected cell. Every
other cell in the matrix becomes light gray to help the user focus on connections. Additionally, the connections
to graph nodes from the selected cell are emphasized too, as they are drawn boldly. [Henry et al., 2007,
pages 1302-1309]

9
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Figure 3.1: The demo application of Nodetrix. Screenshot created by the authors using Nodetrix. [Henry
et al., 2007, pages 1302-1309].

Figure 3.2: The color encoding of Matrix Zoom. Screenshot created by the authors using Matrix Zoom.
[van Ham, 2003, pages 227–232]
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Figure 3.3: The 3D representation of Data in Cubix. Screenshot created by the authors using Cubix.[Bach
et al., 2014, pages 877–886]

3.4 Example: Matrix Zoom

Matrix zoom uses colors to visualize edge attributes, as shown in figure 3.2. In the example set, edge attributes
are an indication if a call is allowed or not or the local neighborhood of a call, visualized in a color scale.
Therefore, calls, which have a shorter path-distance to the considered call are indicated in red. Transparency is
used to indicate the call density of this matrix cell, higher cell density meaning a larger percentage of sub cells
containing calls. [van Ham, 2003, pages 227–232]

3.5 Example: Cubix

Cubix is a tool to visualize and analyze graphs, which change over time using the space-time-metaphor. Ad-
jacency matrices are stacked onto each other in chronological order to create a cube with two vertices and one
time dimension, as it is shown in figure 3.3.

The cell colors represent by default the edge weight. This can also be changed to the edge weight diverging
or the affiliation to a specific time slice. The user can switch off the color encoding too, for more easily
recognizing patterns of the cells. Since this is a three-dimensional visualization, cell opacity is an important
method for identifying patterns or cells behind another one. For further investigation, a single time slice can be
inspected as seen in figure 3.4

Additionally, the size of the cell is another tool to visualize the weight of the edges and their change over
time. For pattern finding, this feature can also be turned off. [Bach et al., 2014, pages 877–886]
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Figure 3.4: The same data as in figure 3.3 in 2D, shown as time slices. Screenshot created by the authors
using Cubix. [Bach et al., 2014, pages 877–886]



Chapter 4

Reordering

Reordering describes the process of either moving nodes in a graph or moving rows or columns in a matrix.
There are two types of reordering: manual and automatic. The former is done by the user of a program. The
latter is computed by a software tool using its implemented algorithms. This survey focuses on automatic
reordering.

The information used as input for the reordering algorithms can either be the node label, node in or out
degree or clustering data. The mentioned information sources are not a complete list of available reordering
input data. However, they were found in the tested programs and are described in more detail in the following
sections.

4.1 Reordering Using Node Label

The data used for this example describes a number of functions of a program connected corresponding to their
control flow. Figure 4.1 shows the directed graph with the functions as nodes; figure 4.2 shows the unsorted
matrix representation of the graph. The result of reordering the matrix based on alphabetic label name order
can be seen in 4.3.

4.2 Reordering Using Node Out Degree

The data used for this example is the same as in 4.1. Figure 4.4 shows a reordered matrix based on ascending
order of node in and out degree. The function with the largest number of incoming links is the rightmost column
and the node with the largest number of outgoing links the lowermost row of the matrix.

4.3 Reordering Using Node Clustering

As node clustering needs to be computed first, this type of reordering is explained in an example taken from
the program Nodetrix. Displayed in figure 4.5 is the graph with the clustered nodes marked in different colors,
and sub-matrices for some of the ordered clusters.

13
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Figure 4.1: The nodes are functions in a program connected corresponding to control flow. [Image created by
an author of this thesis using www.draw.io.]

Figure 4.2: This is the matrix corresponding to 4.1. Function callers are marked in the columns and func-
tion callees in the rows. [Image created by an author of this thesis using Microsoft Excel.]

www.draw.io
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Figure 4.3: The original matrix is reordered using alphabetic sorting of the labels. [Image created by an author
of this thesis using Microsoft Excel.]

Figure 4.4: The original matrix is reordered using information about the degree of the nodes. The columns
are sorted corresponding to their out degree and the rows to in degree. [Image created by an author
of this thesis using Microsoft Excel.]

Figure 4.5: The original matrix is reordered using clustering information which is computed based on node
labels. [Screenshot created by an author of this thesis using Nodetrix. [Henry et al., 2007, pages 1302-1309].]
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Chapter 5

Matrix Headers

A standard matrix visualization contains a symmetric grid representing the node connections and node labels
on top and to the left side of the grid. In this survey this area and in general the area around the grid is referred
to as matrix header. The matrix header can be used for visualizing additional information about the matrix
data. An example for that is a group of node connections, the node density or the current level of zoom in
a multi-layer matrix. There are various techniques to achieve additional information visualization in a matrix
header. Most of them can be found in the program Matrix Explorer.

The Matrix Explorer is another tool for matrix visualization of graphs. As seen in figure 5.1, the program
displays the matrix without a zoom functionality, while giving a small overview of the full matrix in the top
left corner of the graphical user interface. Aside from the matrix visualization, the Matrix Explorer provides
various options for filtering and sorting of nodes and executing operations on the matrix headers. The following
section describes the most common operations and gives one example per listed header visualization technique
for a better understanding.

5.1 Node Connections

As seen in figure 5.2 from the program MatLink, created by [Henry, 2008, pages 105-118] curved lines are
used for highlighting node connections. The shortest path is highlighted in red. When one node is selected, the
program draws the paths in the headers of the matrix. Using this visual information it can quickly be seen how
many other nodes are connected directly to the selected node. In addition, the path from one node to another
connected node can be traversed using these lines [Henry, 2008, pages 105-118].

5.2 Histogram per Node

A histogram can be computed over various node properties. An example for such a property is the node degree.
The Matrix Explorer offers this histogram functionality. Figure 5.3 shows a matrix visualization of data similar
to that used for the first two examples in the previous chapter. Again, a set of functions from a program are
represented as nodes and the programs control flow as links. Looking at the histogram which was computed
over the outgoing links it becomes obvious that the main function has the largest light gray area. This means
that it has the largest number of outgoing links of all nodes. In contrast to the node out degree distribution,
the incoming links follow a more balanced distribution. Considering this example, a histogram in the header
is well suited for showing the general distribution of the node degree. In case nodes containing extreme values
should be highlighted, the header color visualization technique can be used.

17
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Figure 5.1: The graphical user interface of the matrix visualization tool Matrix Explorer [Henry, 2008].
[Screenshot created by an author of this thesis using Matrix Explorer. [Henry, 2008].]

Figure 5.2: In the program MatLink [Henry, 2008, pages 105-118] the paths between selected nodes are
highlighted using curved lines. The shortest path is drawn in red. [Image taken from the master thesis
[Henry, 2008, pages 105-118].]
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Figure 5.3: The size of the white area in the node label represents the node degree. [Screenshot created by an
author of this thesis using Matrix Explorer. [Henry, 2008].]

5.3 Color Highlighting

Every node in a graph can be assigned a color in a certain range. This color distribution assigned to the nodes
can be computed for the same properties as the histogram. The darker the color the higher the value of this
node. Considering the same example and figure 5.4 as in the previous section, it becomes obvious that the start
function has no incoming links as it is the root function of the program.

5.4 Histogram per Matrix Sub-Section

In contrast to the histogram computed per node as explained in 5.2 , a histogram can also be computed over
multiple columns or rows at the same time. Figure 5.5 shows an example. The screenshot was taken from
the matrix visualization program MatrixZoom. The displayed matrix is divided into three times three sub-
sections. For every group of three vertically or horizontally aligned sections the amount of data contained in it
is computed. Next, those values are transformed into a histogram representation, which is then drawn as light
blue bars on the right and bottom matrix header. The result shows that the center section of the matrix has the
largest density of data points of all sub-sections.
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Figure 5.4: The intensity of the color in the node label represents the node degree. [Screenshot created by an
author of this thesis using Matrix Explorer. [Henry, 2008].]

Figure 5.5: The matrix is divided into nine different sub-sections. For each row and column of sub-sections
the density of data points is computed. The result is drawn as light blue bars in the right and
bottom matrix header. [Screenshot created by an author of this thesis using Matrix Zoom. [F. J. J. Van Ham,
2005].]



Conclusion

Several tools for matrix visualization of graphs were discussed and evaluated with focus on the implementation
of a zoom function, cell visualization techniques and matrix header visualizations. Evaluating all of these three
points, it became clear that each of the presented tools implements a different key aspect. While MatrixZoom
has the best zoom implementation, Nodetrix provides very good cell visualization techniques, Matrix Explorer
offers the best support for additional information visualization.

All in all, no program can be recommended in general for any application. Best approach is to consider the
type and size of the data before choosing a matrix visualization tool.
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