
Data Harvesting and Cleaning

Andrea Denger, Christian Kaiser, and Selver Softic
Group 4

Institute for Information Systems and Computer Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

22 May 2013

Abstract

This survey comprehends main principles of data harvesting and cleaning and offers a short and compact outline
over these two fields in theoretical and practical manner. The Harvesting part is focused on scraping rather then
crawling, since scraping tables from HTML and PDF is a main point of matter of this survey. Hand in hand
with literature study and tools introduction, short practical examples are included and discussed within the
chapter about data harvesting. The examples chapter at the end of survey elaborates these tasks more precisely.
The Data Cleaning chapter starts with some basic definitions and the literature study from the field of data
cleaning and concludes the survey with the description of several promising off-line and on-line tools from
science and software industry as well as discussing problems and issues from this field. Same as in the case of
data harvesting, the examples chapter delivers practical insights on this problem. At the end some conclusions
has been drawn regarding the elaborated topics.

Contents

1 Introduction 1

2 Data Harvesting 3
2.1 Motivation and Definition . 3
2.2 Web Crawler . 4

2.2.1 Definition . 4
2.2.2 Purposes . 6

2.3 Scraping . 6
2.3.1 Data Scraping vs. Regular Parsing . 6
2.3.2 PDF Scraping . 6
2.3.3 HTML Scraping . 8

2.4 Tools and Techniques . 9
2.4.1 Scraper Wiki . 9
2.4.2 pdftohtml . 9
2.4.3 pdftable . 10
2.4.4 htmltable . 10

2.5 Challenges and Problems . 11

3 Data Cleaning 13
3.1 Motivation and Definition . 13
3.2 Data Quality . 14
3.3 Data Quality Criteria . 14
3.4 Data Cleaning process . 16

3.4.1 Main Steps . 16
3.4.2 Popular Methods . 16

3.5 Off-line Tools . 17
3.5.1 OpenRefine . 17
3.5.2 Potter’s Wheel A-B-C . 19
3.5.3 Easy Data Clean . 19
3.5.4 DataCleaner . 19

3.6 Online Tools and Services . 21
3.6.1 Wrangler . 21
3.6.2 Data8 . 22
3.6.3 AddressDoctor . 22

3.7 Challenges and Problems . 22
3.7.1 Error Correction . 23
3.7.2 Maintenance of Cleaned Data and Impact on Costs 23

i

4 Selected Examples 24
4.1 Data Harvesting . 24

4.1.1 Crawling Twitter Feed . 24
4.1.2 Extracting Tables from PDF . 25

4.2 Data Cleaning . 26
4.2.1 OpenRefine . 26

Bibliography 30

ii

Chapter 1

Introduction

Open data communities all over the world deal with the problem to get access to data which should be public,
for example data of a cities public transport system or annual reports of companies owned by the government.
As the companies are often not willing to publish raw data, the data is published in, for example, PDF format.
"Government sites in particular are famous for publishing PDFs instead of raw data"[Rotter, 2013].Journalists
and the open data communities therefore have to harvest the given data and additionally transform the data to
raw data in order to ensure the possibility of running statistics or visualizations on it. This survey comprehends
main principles of data harvesting and cleaning and offers a short and compact outline over these two fields
in theoretical and practical manner including selected examples in a tutorial-style. The Harvesting chapter is
divided into a motivation section including the literature study, a section about web crawling, a section about
scraping, a short section about an introduction into tools and techniques and a conclusion section dealing
with challenges and problems. The Data Cleaning chapter is divided into a motivation section including the
literature study, a section about data quality, a section about the data cleaning process, a section each about an
introduction into On-line and Off-line tools and services and a conclusion section dealing with challenges and
problems. The examples chapter at the end of survey elaborates tasks more precisely in a tutorial-style about
crawling a Twitter feed, extracting tables from PDF files and cleaning data using the OpenRefine1 Tool.

1http://openrefine.org/

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Data Harvesting

2.1 Motivation and Definition

Data harvesting, known as scraping or mining, is a process to transform raw data into "useful" information. On
the one hand, harvesting seems to hold the promise of reduced data acquisition and updated costs. On the other
hand, online publishers spend time and effort protecting data from appropriation and unauthorized use from
various types of harvester.

"Web harvesting describes the process of gathering and integrating data from various hetero-
geneous web sources." [Gatterbauer, 2009]

"’Scraping’ data basically means to retrieve data from the web, stored in a less convenient
format like HTML tables, and copy it into a format you can use such as a CSV file or database."1

Figure 2.1: Data / Web Harvesting.2

The internet is a huge data store which can be accessed from all over the world and there has been noted a
rapid expansion of the web what causes an enormous growth of information. Information can vary from text,
media or any other binary information. Information on web pages can be displayed in different formats and
therefore posing difficulties in its harvesting which has led to increased difficulty in the extraction of "useful"
and "potential" information. Web scraping therefore confronts this problem by harvesting explicit information
from a number of websites for knowledge discovery and easy access. It is therefore important to realize that
the web offers unprecedented challenge and opportunity to data harvesting.

1Ben Morris, http://www.sciprogblog.com/2012/01/scraping-data-with-python.html, online 2013-05-18
2http://www.flickr.com/photos/dff-jisc/4332033087/, online 2013-05-15

3

4 CHAPTER 2. DATA HARVESTING

Loginworks Softwares3 describes challenges for data harvesting and Web scraping in their blog4 in the
following way:

• Huge amount of information. Some information is found on the internet and it can range from one aspect
to the other. Usually this information is more than what is needed. Therefore it is a great concern in
getting the required information that is relevant for a personal purpose too.

• Wide and diverse coverage of web information. In the web almost all topics are covered. This is an
opportunity to get the variety of information. Nevertheless it is still a challenge of getting information on
a particular target from the wide and diverse audience.

• All types of data are available on the web. Information is usually stored in many formats like texts,
multimedia, spreadsheets, structured tables and so on and so forth. Harvesting such kind of information
is a task that may consume resources in terms of personnel, time and financial.

• Most of the data is linked. Information on the web is linked from one website to the other with several
hyperlinks. When it comes to harvesting information from such sites that make the majority in the
internet today, it is likely to mismatch information.

• Most of the data is redundant. The issue is that collected information that is found on a large number of
web sites may be similar. This is because of banner advertisements, copyright notices, navigation panels
and many others. It is therefore important to engage in web scraping as to solve such a kind of problem.

• Deep web and surface web. Surface data can be regarded as the data which will get by use of browser.
There is more information that is protected from public users. This information may be more beneficial
than other information which can be regarded as surface data. The web is ever dynamic.

• It is a virtual society. The Internet can be regarded as a virtual society based on the following reasons.
The internet is never only about products and services, data, however it is about interactions about people,
organizations and various automatic systems too. This usually poses a great challenge when it comes to
harvesting of such data.

2.2 Web Crawler

2.2.1 Definition

A Web crawler, known as robot or spider, is a computer program that browses the World Wide Web in a
methodical, automated manner to create an index of the data it is looking for. The first web robot appears to
be the Wanderer by Matthew Gray, a physics student at Massachusetts Institute of Technology (MIT), written
in the spring of 1993. Gray’s World Wide Web Wanderer was designed to track the growth of the then-infant
Web.

"In Spring of 1993, I wrote the Wanderer to systematically traverse the Web and collect sites.
I was initially motivated primarily to discover new sites, as the Web was still a relatively small
place. The Wanderer was the primary tool for collection of data to measure the growth of the web.
It was the first automated Web agent or "spider". The Wanderer was first functional in spring of
1993 and performed regular traversals of the Web from June 1993 to January 1996 [Gray, 1995]."

Manning et al. list the desiderata for Web crawlers in two categories. Firstly, features that web crawlers
must provide and secondly, they should provide [Manning, Raghavan, and Schütze, 2008].

Features a crawler must provide [Manning, Raghavan, and Schütze, 2008 p. 443]:
3www.loginworks.com/
4www.loginworks.com/blogs/web-scraping-blogs/174-web-scraping-the-solution-to-data-harvesting

2.2. WEB CRAWLER 5

• Robustness: The Web contains servers that create spider traps, which are generators of web pages that
mislead crawlers into getting stuck fetching an infinite number of pages in a particular domain. Crawlers
must be designed to be resilient to such traps. Not all such traps are malicious; some are the inadvertent
side-effect of faulty website development.

• Politeness: Web servers have both implicit and explicit policies regulating the rate at which a crawler can
visit them. These politeness policies must be respected.

Features a crawler should provide [Manning, Raghavan, and Schütze, 2008 p. 444]:

• Distributed: The crawler should have the ability to execute in a distributed fashion across multiple ma-
chines.

• Scalable: The crawler architecture should permit scaling up the crawl rate by adding extra machines and
bandwidth. Performance and efficiency: The crawl system should make efficient use of various system
resources including processor, storage and network bandwidth.

• Quality: Given that a significant fraction of all web pages are of poor utility for serving user query needs,
the crawler should be biased towards fetching "useful" pages first.

• Freshness: In many applications, the crawler should operate in continuous mode: it should obtain fresh
copies of previously fetched pages. A search engine crawler, for instance, can thus ensure that the search
engine’s index contains a fairly current representation of each indexed web page. For such continuous
crawling, a crawler should be able to crawl a page with a frequency that approximates the rate of change
of that page.

• Extensible: Crawlers should be designed to be extensible in many ways - to cope with new data formats,
new fetch protocols, and so on. This demands that the crawler architecture be modular.

The process is called Web crawling or spidering. Many sites, in particular search engines, use spidering as
a means of providing up-to-date data. Web crawlers are mainly used to create a copy of all the visited pages
for later processing by a search engine that will index the downloaded pages to provide fast searches. Crawlers
can also be used for automating maintenance tasks on a Web site, such as checking links or validating HTML
code. Also, crawlers can be used to gather specific types of information from Web pages, such as harvesting
e-mail addresses, for example for spam.

The process of web harvesting can be divided into three subsequent tasks [Gatterbauer, 2009]:

• data or information retrieval, which involves finding relevant information on the Web and storing it
locally. This task requires tools for searching and navigating the Web, i.e., crawlers and means for
interacting with dynamic or deep web pages, and tools for reading, indexing and comparing the textual
content of pages;

• data or information extraction, which involves identifying relevant data on retrieved content pages and
extracting it into a structured format. Important tools that allow access to the data for further analysis are
parsers, content spotters and adaptive wrappers;

• data integration which involves cleaning, filtering, transforming, refining and combining the data ex-
tracted from one or more web sources, and structuring the results according to a desired output format.

In general, a Web crawler starts with a list of URLs to visit, called the seeds. As the crawler visits URLs,
hyperlinks on the page are identified and added to the list of URLs to visit next, called the crawl frontier. URLs
from the frontier are recursively visited according to a set of policies.

6 CHAPTER 2. DATA HARVESTING

2.2.2 Purposes

Some purposes of using Web crawlers are to monitor content change, visualize relations or identify clusters, for
example a friend-network of a social network. Another purpose is in data collections, for example tweets using
the Tag #tugraz. Crawlers can be scheduled, for example to run on a daily or monthly basis. Some On-line
Crawlers, for example Scraperwiki5, provide an API, for example to retrieve the crawled data JSON formatted.

There are several uses for web crawlers. Basically a Web crawler is used to collect information out on
the Internet. Web search engines commonly use Web crawlers to collect information about what is available
on public web pages. Their primary purpose is to collect data to provide relevant web sites if Internet surfers
search for a keyword on the site. A related use is Web archiving, where large sets of web pages are periodically
collected and archived for posterity. An example for web archiving is the Internet archive6, a non-profit digital
library with the stated mission of "universal access to all knowledge". Another use is web data mining, where
web pages are analyzed for statistical properties, or where data analytics is performed on them. An example
would be Attributor7, a provider of digital content protection for the publishing industry olston2010we

Linguists may use a web crawler to perform a textual analysis to scour the Internet to determine what words
are commonly used today. Market researchers may use a Web crawler to determine and assess trends in a given
market.8

On the one hand Web crawler can adopt a pull model where the web is proactively searched for new or
updated information, or it is tried to establish a convention and a set of protocols enabling content providers
to push content of interest to the collectors. A general purpose is that Web crawler gather as many pages as
possible from a particular set of URLs. According to Peshave [Peshave, 2005] there are two different techniques
Web crawlers are able to go. A focused crawler is designed to only gather documents on a specific topic. Hence
the goal of the focused crawler is to selectively seek out pages that are relevant to this pre-defined set of topics.
As the size of the Web is growing it has become imperative to parallelize the crawling process in order to
finish downloading the pages in a reasonable amount of time. A distributed Web crawling, it is a distributed
computing technique whereby Internet search engines employ many computers to index the Internet via Web
crawling.

2.3 Scraping

2.3.1 Data Scraping vs. Regular Parsing

"The key element that distinguishes data scraping from regular parsing is that the output be-
ing scraped was intended for display to end-user, rather than as input to another program, and is
therefore usually neither documented nor structured for convenient parsing9."

Data scraping is a technique in which a computer program extracts data from human-readable output
coming from another program. Screen scraping is normally associated with the programmatic collection of
visual data from a source, instead of parsing data as in web scraping.

2.3.2 PDF Scraping

Extracting information from PDF documents is called PDF scraping.

"When you’re looking for data to use in your own applications, you may find it’s not always
in the format you want. Government sites in particular are famous for publishing PDFs instead of
raw data which is easier to parse10."

5http://www.scraperwiki.com
6http://archive.org/about/, online: 2013-05-18
7http://www.attributor.com/, online: 2013-05-18
8http://www.wisegeek.org/what-is-a-web-crawler.htm, online: 2013-05-18
9http://en.wikipedia.org/wiki/Data_scraping

10http://readidea.com/magazines/issue4/scraperwiki.html, online 2013-05-20

2.3. SCRAPING 7

Some problems with PDF scraping will be:

• hard to format, for example tables of annual reports contain "null" values

• correct data-type, for example integers parsed as strings

• large volume, for example data tables which exceed one PDF page in length

• rate of change, for example for daily measurement data, need flexibility

PDFMiner11 is a tool for extracting information from PDF documents. Unlike other PDF-related tools, it
focuses on gathering and analyzing text data. PDFMiner allows to obtain the exact location of text in a page, as
well as other information such as fonts or lines. It includes a PDF converter that can transform PDF files into
other text formats (such as HTML). It has an extensible PDF parser that can be used for other purposes than
text analysis.

The command line tool pdf2txt.py extracts text contents from a PDF file. It extracts all the text that are
to be rendered programmatically, i.e. text represented as ASCII or Unicode strings. It cannot recognize text
drawn as images that would require optical character recognition. It also extracts the corresponding locations,
font names, font sizes, writing direction (horizontal or vertical) for each text portion. You need to provide a
password for protected PDF documents when its access is restricted. You cannot extract any text from a PDF
document which does not have extraction permission. Not all characters in a PDF can be safely converted to
Unicode.

Example (pdf2txt.py):

1 \$ pdf2txt .py −P mypassword −o output .txt secret .pdf

Listing 2.1: command line extract a text from an encrypted PDF file

The command line tool dumppdf.py dumps the internal contents of a PDF file in pseudo-XML format. This
program is primarily for debugging purposes, but it’s also possible to extract some meaningful contents (such
as images).

Example 1 (dumppdf.py):

2 \$ dumppdf .py −a foo .pdf

Listing 2.2: command - line dump all the headers and content, except stream objects

Example 2 (dumppdf.py):

3 \$ dumppdf .py −T foo .pdf

Listing 2.3: command - line dump the table of contents

Slate12 is a Python package that simplifies the process of extracting text from PDF files. It depends on the
PDFMiner package. Slate provides one class, PDF. PDF takes a file-like object and will extract all text from
the document, presentating each page as a string of text

4 >>> with open (’example .pdf ’) as f :
5 . . . doc = slate .PDF (f)
6 . . .
7 >>> doc
8 [. . . , . . . , . . .]

11http://www.unixuser.org/ euske/python/pdfminer/index.html
12https://pypi.python.org/pypi/slate, online: 2013-05-18

8 CHAPTER 2. DATA HARVESTING

9 >>> doc [1]
10 ’Text from page 2 . . . ’

Listing 2.4: PDF - each page as a string of text

If the pdf is password protected, pass the password as the second argument:

11 >>> with open (’secrets .pdf ’) as f :
12 . . . doc = slate .PDF (f , ’password ’)
13 . . .
14 >>> doc [0]
15 "My mother doesn ’t know this , but . . . "

Listing 2.5: PDF - password protected

The AddToIt Document Engine13 was designed with flexibility and performance in mind. Some of the
features of the AddToIt Document Engine include:

• Retrieval of documents and data from multiple sources including websites

• Transformation of documents from unstructured to structured formats, e.g. PDF to XML

• Normalization of data within documents into a standard data form

• Document and data storage for fast retrieval from a database

• Delivery of data in multiple formats via multiple means (FTP/HTTP)

The AddToIt Document Engine is collecting data from HTML and PDF documents found on the web from
within databases on disk or from email. It then transforms them into an XML document representation and
normalizes the data. It stores the data in document and data form in the AddToIt database. Users of the data
receive the data from the database on request (e.g. through a web interface) or it is delivered to them at regular
intervals.

Tesseract14 is a open source OCR engine available under the Apache 2.0 license15. Combined with the
Leptonica Image Processing Library16 it can read a wide variety of image formats and convert them to text in
over 60 languages.

2.3.3 HTML Scraping

Beautiful Soup17 is a Python library for parsing HTML documents (including having malformed markup, i.e.
non-closed tags, so named after Tag soup). It creates a parse tree for parsed pages that can be used to extract
data from HTML, so this library is useful for web scraping — extracting data from websites.

Three features make it powerful:

1. Beautiful Soup provides a few simple methods and Pythonic idioms for navigating, searching, and mod-
ifying a parse tree: a toolkit for dissecting a document and extracting what is needed.

2. Beautiful Soup automatically converts incoming documents to Unicode and outgoing documents to UTF-
8. No thinking about encodings, unless the document does not specify an encoding and Beautiful Soup
cannot autodetect one. If so, the original encoding has to be specified.

13http://www.addtoit.com/screen-scraping_index.html
14http://code.google.com/p/tesseract-ocr/, online: 2013-05-18
15http://www.apache.org/licenses/LICENSE-2.0
16http://leptonica.com/
17http://www.crummy.com/software/BeautifulSoup/

2.4. TOOLS AND TECHNIQUES 9

3. Beautiful Soup sits on top of popular Python parsers like lxml18 (The lxml XML toolkit is a Pythonic
binding for the C libraries libxml2 and libxslt.) and html5lib19 (html5lib is a pure-python library for
parsing HTML. It is designed to conform to the WHATWG HTML specification, as is implemented by
all major web browsers.), allowing everybody to try out different parsing strategies or trade speed for
flexibility.

2.4 Tools and Techniques

2.4.1 Scraper Wiki

In 2003, the founders of ScraperWiki were the first people in the world to write computer programs to download
Government information and make it more accessible to citizens.ScraperWiki20 was founded in 2009 by Julian
Todd and Aidan McGuire. They received initial funding from British TV station Channel 4. After fostering an
active community of open data coders and data journalists, ScraperWiki won the Knight News Challenge21 in
2011. In 2012 ScraperWiki closed a million dollar round of investment led by EV, a UK-based fund manager,
which provides venture and growth capital of up to £2million to new or existing SMEs located throughout the
UK and trading across technology and non-technology sectors, to improve their platform for coders and build
out our business offering.22

Figure 2.2: ScraperWiki Logo.23

ScraperWiki is a screen scraping tool. It is a technology platform that allows programmers to write and
schedule screen scrapers and store the data they generate. It is an online tool that makes finding and storing data
simpler and more collaborative. The main use of the ScraperWiki website is providing a place for programmers
and journalists to collaborate on analyzing public data.

2.4.2 pdftohtml

Pdftohtml24 is a program that converts pdf documents into html and generates its output in the current working
directory. The conversion process is performed using CLI (Windows Command Line Interpreter). Pdftohtml
supports extracting images from the PDF document, complete document conversion. Furthermore it runs in

18http://lxml.de/
19https://github.com/html5lib/html5lib-python#readme
20https://scraperwiki.com/
21http://thenextweb.com/uk/2011/06/23/scraperwiki-a-uk-open-data-project-wins-280k-award/
22http://www.prweb.com/releases/2012/2/prweb9149117.htm
23https://scraperwiki.com/, online 2013-05-18
24http://pdftohtml.sourceforge.net/, online 2013-05-18

10 CHAPTER 2. DATA HARVESTING

debug mode. It is a cross-platform application which works on Windows, Mac, and Linux. Pdftohtml was
developed by Gueorgui Ovtcharov and Rainer Dorsch. It is based and benefits from Derek Noonburg’s xpdf25

package.

16 pdftohtml [options] []
17 −f : first page to convert
18 −l : last page to convert
19 −q : don ’t print any messages or errors
20 −h : print usage information
21 −help : print usage information
22 −p : exchange .pdf links by .html
23 −c : generate complex document
24 −i : ignore images
25 −noframes : generate no frames
26 −stdout : use standard output
27 −zoom : zoom the pdf document (default 1 . 5)
28 −xml : output for XML post−processing
29 −hidden : output hidden text
30 −nomerge : do not merge paragraphs
31 −enc : output text encoding name
32 −dev : output device name for Ghostscript (png16m , jpeg etc)
33 −v : print copyright and version info
34 −opw : owner password (for encrypted files)
35 −upw : user password (for encrypted files)

Listing 2.6: Usage of pdftohtml26

2.4.3 pdftable

Pdftable27 is a python module and command line utility that analyzes XML output from the program pdftohtml
in order to extract tables from PDF files and output them as CSV data. It makes it easier to automate the process
of parsing tabular data contained within reports, ledgers, or other data sets that are only published in PDF. The
Python script takes the XML input and extracts the founded tables to a CSV file via the package pdftable.py28

one file for each table type.
The pdftohtml.exe29 converts the given page of the downloaded PDF file to XML. The Command is shown

in the next line.

36 pdftohtml −f 74 −l 75 −xml −stdout file .pdf | python pdftable −f file\%d .csv

Listing 2.7: Command on pdftohtml.exe

2.4.4 htmltable

There are some Python packages for parsing HTML tables available.
htmltable.py30 is a small Python HTML parser to extract tables from HTML files. On the one side it extracts

all tables from an HTML file and nested tables (tables in a table) are also supported. On the other side it flattens
HTML tables into plain-text tables.

25http://www.foolabs.com/xpdf/, online 2013-05-18
27http://pdftable.sourceforge.net/, online 2013-05-20
28https://pypi.python.org/pypi/pdftable/1.0, online 2013-05-20
29http://pdftohtml.sourceforge.net/, online 2013-05-20
30https://github.com/sangjinhan/htmltable

2.5. CHALLENGES AND PROBLEMS 11

37 html = open (’sample .html ’) .read ()
38 extractor = HTMLTableExtractor ()
39 tables = extractor .get_tables (html)

Listing 2.8: Usage:’tables’ will be a list of tables. Each table is represented as a list of list.

Some notes on htmltable.py are that there is no external dependency. It works with the standard Python
library. And it may incorrectly work against broken HTML files.

table_parser.py31 is a simple HTML table parser. It turns tables (including nested tables) into arrays.

2.5 Challenges and Problems

There are many challenges in data harvesting. Whether data should be harvested from the Web or local
databases. Many different business will deal with data harvesting. For example business out of real estate,
journalism or in the field of the automotive industry. For example with eBay being one of the world’s most
leading ecommerce marketplace that envelopes a huge portfolio of businesses from all over the world, a lot of
storeowners browse the web on a daily basis in search of product details and bid prices. Using web scraping
service on an eBay store or ecommerce business will help to increase efficiency and productivity.

An important research problem is the optimal combination of automation (high recall) and human involve-
ment (high precision). At which stages and in which manner a human user must interact with an otherwise
fully automatic web harvesting system for optimal performance (in terms of speed, quality, minimum human
involvement, etc.) remains an open question.

Problem scenarios are:

• Large volume of Web pages / PDFs

• High rate of changes on web pages

• Scanned PDFs need Optical Character Recognition (OCR)32 to transform the images to data.

Web scraping may be against the terms of use of some websites. The enforceability of these terms is
unclear. Crawlers can retrieve data much quicker and in greater depth than human searchers, so they can have
a crippling impact on the performance of a site. Needless to say, if a single crawler is performing multiple
requests per second and/or downloading large files, a server would have a hard time keeping up with requests
from multiple crawlers.

Web site owners use the /robots.txt file to give instructions about their site to web robots.

40 User−agent : *
41 Disallow : /

Listing 2.9: Example /robots.txt

"User-agent: *" represents that this section applies to all robots.
"Disallow: /" submits to the robot should not visit any pages on the site.
There are two important considerations when using /robots.txt:

• robots can ignore your /robots.txt. Especially malware robots that scan the web for security vulnerabili-
ties, and email address harvesters used by spammers will pay no attention.

• the /robots.txt file is a publicly available file. Anyone can see what sections of your server you don’t want
robots to use.

31https://github.com/niksite/table-parser/blob/master/table_parser.py
32http://en.wikipedia.org/wiki/Optical_character_recognition, online 2013-05-20

12 CHAPTER 2. DATA HARVESTING

Chapter 3

Data Cleaning

3.1 Motivation and Definition

"Dirty Data" is a problem dated with the occurrence of first computers. Under this term useless "garbage data"
is considered produced by computing process. Hand in hand with increasing number of implementations of
customer relationship management (CRM) systems and data warehouses the problem of "Dirty Data" emerged
and data hygiene became an important issue. Nowadays data cleaning became an integral part of data processing
and maintenance. Meanwhile a broad range of methods intending to enhance the accuracy and usability of data
has been developed. Within the series of reports made 2001 by Cutter Consortium about organizations that
implement data warehouses for the purposes of business intelligence various sources of "Dirty Data" has been
identified by interviewed candidates. The report has shown that most common sources of unclean data in
practice come from:

• data missing from database fields

• lack of company wide coding standards for data

• poor data entries which includes typos, misspellings, abbreviations and duplicates

• poorely documented or old legacy data

Within the scientific community many authors has been investigating the issues around the sources of "Dirty
Data". In their comprehensive survey on data cleaning [Müller and Freytag, 2003] distinguish three types of
data anomalies: syntactical, semantic, and coverage anomalies.

As synctatical anomalies can be considered:

• Lexical errors - which are discrepancies between the structure of the data items and the specified format.

• Domain format errors - which specify errors where the given value for an attribute does not conform with
the anticipated domain format.

• Irregularities - concerned with the non-uniform use of values, units and abbreviations

In their work authors sorted out following semantic anomalies subgroups:

• Integrity constraint violations - which describe tuples (or sets of tuples) that do not satisfy one or more
of the integrity constraints.

• Contradictions - which are values within one tuple or between tuples that violate some kind of depen-
dency between the values.

• Duplicates - two or more tuples representing the same entity from the mini-world.

13

14 CHAPTER 3. DATA CLEANING

• Invalid tuples - which represent by far the most complicated class of anomaly found in data collections.
Hereby are meant tuples that do not display anomalies of the classes defined above but still do not
represent valid entities from the mini-world.

Finally the third group of data anomalies which treats the coverage aspects distinguishes:

• Missing values - as the result of omissions while collecting the data.

• Missing tuples - result from omissions of complete entities existent in the mini-world that are not repre-
sented by tuples in the data collection.

Taking all this aspects into account most appropriate and most cited definition for data cleaning is given by
[Rahm and Do, 2000]:

Data cleaning, also called data cleansing or scrubbing, deals with detecting and removing errors
and inconsistencies from data in order to improve the quality of data.

3.2 Data Quality

In order to specify the measurement of data cleaning process success a set of metrics was necessary to be
defined. Those definition has been delivered by previous works on this topic like [Naumann, 2002; Tonn,
2000]. All data outcomes of cleaning process which satisfy these criteria are considered to be of a high quality.
This means that data quality is defined as an aggregated value over a set of quality criteria as stated in Naumann,
2002.

Starting with the quality criteria defined in [Naumann, 2002; Tonn, 2000], [Müller and Freytag, 2003]
describe the set of criteria which are affected by comprehensive data cleansing and define how to assess scores
for each one of them for an existing data collection. According to findings in Müller and Freytag, 2003, in
order to measure the quality of a data collection, scores have to be assessed for each of the quality criteria.
This assessment can be used then to detect the necessity of data cleansing for a data collection as well as to
measure success of a performed data cleansing process. Other field of application the authors also describe
is optimization of data cleaning by specifying priorities for each of the criteria which in turn influences the
execution of data cleaning methods affecting the specific criteria.

3.3 Data Quality Criteria

The quality criteria defined for comprehensive data cleaning in [Müller and Freytag, 2003] form a hierarchy.
Figure 3.1 shows the resulting hierarchy.

Those criteria has been defined by [Naumann, 2002; Müller and Freytag, 2003; Motro, 1989] as follows:
Accuracy in [Naumann, 2002] is defined as the quotient of the number of correct values in the data collection
and the overall number of values. Accuracy can be also seen as an aggregated value over the quality criteria
Integrity, Consistency, and Density.
Integrity is used as defined in Motro, 1989. It is further divided into the criteria Completeness and Validity and
therefore again an aggregated value over quality criteria.
Completeness is defined as the quotient of entities from a set S being represented by a tuple in T and the
overall number of entities in S.
Validity is the quotient of entities from S being represented by tuples in T and the total amount of tuples. For
instance the percentage of tuples in T representing (valid) entities from S.
Consistency concerns the syntactical anomalies as well as contradictions. It is further divided into Schema
conformance and Uniformity forming another aggregated value over quality criteria.
Schema conformance is the quotient of tuples in T conform to the syntactical structure defined by schema R
and the overall number of tuples in T.
Uniformity is directly related to irregularities, for instance the proper use of values within each attribute.

3.3. DATA QUALITY CRITERIA 15

Figure 3.1: Hierarchy of data quality criteria as described in [Müller and Freytag, 2003].

Density is quotient of missing values in the tuples of S and the number of total values that known existing for
a represented entity.
Uniqueness is the quotient of tuples representing the same entity in the mini-world and the total number of
tuples in T. A collection that is unique does not contain duplicates.
Figure 3.2 lists the defined quality criteria and anomalies affecting them. Each point indicates direct down-
grading of the quality criteria while dash indicates that the occurrence of this anomaly impedes the detection of
other anomalies downgrading the quality criteria.

Figure 3.2: How Data anomalies affecting data quality criteria from [Müller and Freytag, 2003].

16 CHAPTER 3. DATA CLEANING

3.4 Data Cleaning process

Müller and Freytag, 2003 define data cleaning process as "the entirety of operations performed on existing
data to remove anomalies and receive a data collection being an accurate and unique representation of the mini-
world". Generally seen it is usually a semi-automatic or automatic process which includes actions of formating,
adaptations, validations, derivation of missing values as well removing contradictions between the entry values.
Mostly this process finishes by merging and eliminating the duplicates as well by identification of outliers. The
outcome of this process should be easier manageable and better fitting data.

3.4.1 Main Steps

According to Maletic and Marcus, 2000; Raman and Hellerstein, 2001 data cleaning process can be subdivided
in three major steps:

• Auditing data to identify the types of errors and anomalies which have influence on data quality.

• Choosing appropriate methods to deal with identified problems.

• Applying the methods to the data.

Hereby the last two steps are considered as specification and execution of data cleaning work flow. Addi-
tionally to those three major steps Müller and Freytag, 2003 are adding the fourth "Post-processing or control
step". their view of data cleaning process looks as follows:

Figure 3.3: Data cleaning process steps by [Müller and Freytag, 2003].

Data cleaning process respecified by [Müller and Freytag, 2003] can be seen in Figure 3.3 and it is consid-
ered as endless loop where each iteration delivers a better quality of data.

3.4.2 Popular Methods

In this section we intend to give a short overview for the most popular methods used nowadays in the field of
data cleaning:

Parsing is one of the most often and most applied techniques. Parsing in data cleaning is performed for the
detection of syntax errors. A parser for is a program that decides for a given string whether it is an element of

3.5. OFF-LINE TOOLS 17

the defined context or not.

Data transformation intends to map the data from their given format into the format expected by the ap-
plication ([Abiteboul et al., 1999]). The transformations affect the schema of the tuples as well as the domains
of their values.

Integrity Constraint Enforcement - In general, integrity constraint enforcement ensures the satisfaction
of integrity constraints after transactions modifying a data collection by inserting, deleting, or updating tuples
have been performed. The two different approaches are integrity constraint checking and integrity constraint
maintenance. Integrity constraint checking rejects transactions which violate some integrity constraint. In-
tegrity constraint maintenance is concerned with identifying additional updates to be added to the original
transaction to guarantee that the resulting data collection does not violate any integrity constraint. Latest find-
ings in research on this topic has shown that integrity constraint enforcement is applicable without limitations
only to some degree in data cleaning.

Duplicate elimination - data cleaning introduced several approaches for duplicate elimination. Every du-
plicate detection method proposed requires an algorithm for determine whether two or more tuples are duplicate
representations of the same entity. Generally, for efficient duplicate detection every tuple has to be compared
to every other tuple using this duplicate detection method.

Statistical Methods - [Maletic and Marcus, 2000] described the application of statistical methods in data
cleaning. These methods can be used for the auditing of data as well as the correction of anomalies. Detec-
tion and elimination of complex errors representing invalid tuples go beyond the checking and enforcement of
integrity constraints. They often involve relationships between two or more attributes that are very difficult to
uncover and describe by integrity constraints. This can be viewed as a problem in outlier detection. Within this
process the minorities of tuples and values that do not conform to the general characteristics of a given data
collection are discovered.

3.5 Off-line Tools

This section is meant to deliver fast overview over most promising state of the art off-line tools for data cleaning
which has been reviewed within this survey.

3.5.1 OpenRefine

OpenRefine (former known as Google Refine) is hosted as an open source project1 and it is a standalone desktop
application provided by Google for data cleanup and transformation to other formats. It is similar to spreadsheet
applications but offers many functions that can be found in a database (filters, facets, regular expressions). An
impression of OpenRefine user interface can be seen in figure 3.4.

OpenRefine operates in rows of data in the cell/column manner very similar to Microsoft Excel or database
tables. One table represents one project, where user can filter the rows using facets that define the filter criteria.
One of the important features of OpenRefine represents the action history which is stored withing the project.
Although the OpenRefine represent a web application that runs on server, the software can be downloaded and
run off-line on the local host. OpenRefine supports also transformation, normalizing of data as well different
types of conversions. It is also possible to parse data from web, by using the URL fetch feature and to add
data from the web to dataset by fetching it via web services for instance in JSON2 format. OpenRefine inte-

1http://openrefine.org
2http://www.json.org/

18 CHAPTER 3. DATA CLEANING

Figure 3.4: Data cleaning with OpenRefine.

grates augmentation of datasets with data from Freebase3 as well contributing data to Freebase using Schema
Alignment feature. This involves reconciliation, mapping string values in cells to entities in Freebase. One
of the fancy features are also scatter plot based query capabilities. OpenRefine data import is supported from
following formats:

• TSV (Tab Separated Values), CSV (Comma Separated Values)

• Text file with custom separators or columns split by fixed width

• XML (Extensible Markup language)4

• RDF (Resource Description Framework) triples (RDF/XML and Notation3 serialization formats)5

• JSON (JavaScript Object Notation)

• Google Spreadsheets, Google Fusion Tables

• If input data is in a non-standard text format, it can be imported as whole lines, without splitting into
columns, and then columns extracted later with Refine’s tools.

• Archived and compressed files are supported (.zip, .tar.gz, .tgz, .tar.bz2, .gz, or .bz2) and Refine can
download input files from a URL.

• To use web pages as input, it is possible to import list of URLs and then invoke a URL fetch function.

Export is supported as:

• TSV (Tab Separated Values), CSV (Comma Separated Values)

• Microsoft Excel

• HTML table

• ODF Spreadsheet6

• Templating exporter: it is possible to define custom template for outputting data, for example as Medi-
aWiki table.

• Whole OpenRefine projects in native format can be exported as a .tar.gz compressed archive.
3http://www.freebase.com
4http://www.w3.org/XML/
5http://www.w3.org/RDF/
6http://en.wikipedia.org/wiki/OpenDocument

3.5. OFF-LINE TOOLS 19

3.5.2 Potter’s Wheel A-B-C

Potter’s Wheel A-B-C7 is an interactive tool for data cleaning and data analysis implemented by the University
of Berkeley which tightly integrated operations like: data transformation, discrepancy detection, and data anal-
ysis. Users build stepwise transformations by adding or undoing transforms, in an intuitive manner through a
spreadsheet-like interface. At the same time synchronously to these actions the effect of a transform is shown
at once on records visible on screen. The system automatically checks for discrepancies in the current trans-
formed version of the data, and flags them to the user as they are found. Users can specify transforms through
graphical operations, or by specifying examples of the desired effect, and need not worry about specifying com-
plex regular expressions, grammars, or custom scripts. Discrepancy detection is done in a highly customizable
manner. Figure 3.5 shows Potter’s Wheel A-B-C in action. Last version that was released is 1.3 and dates from
year 2000.

Figure 3.5: Doing transformations with Potter’s Wheel A-B-C.

3.5.3 Easy Data Clean

Easy Data Clean8 is commercial tool for data cleaning that works exclusively with data sheets and offers
very small range of functionality that resides mostly on outliers and entity recognition like Person, Address,
Communication within spread sheet data. It is primary meant for pre-processing mailing files with commercial
contacts. According to the makers of this tool Easy Data Clean supports CSV’s and Excel spreadsheets at
present. Other formats will come along as updates are released. At the moment Easy Data Clean is for UK data
only, covering England, Ireland, Scotland, Wales and the Channel Islands. Although a very few information is
available Easy Data Clean seems to be simple small data cleaning tool with very special purpose.

3.5.4 DataCleaner

DataCleaner9 is a data quality analysis application and a solution platform. It resides on a strong data profil-
ing engine, which is extensible and thereby adds data cleansing, transformations, enrichment, deduplication,
matching and merging are possible. Data Cleaner supports various sets of sources and formats like TSV, CSV,

7http://control.cs.berkeley.edu/abc/
8http://easydataclean.com/
9http://datacleaner.org/

20 CHAPTER 3. DATA CLEANING

Figure 3.6: Easy Data Clean user interface.

Microsoft Excel Spreadsheets, Databases (Oracle, MYSQL, PostgresSQL, Microsoft SQL), Mongo DB, Couch
DBB, XML, Text Formated Files, OpenOffice Documents, Microsofi Access, DBase, SAS, Sybase, H2 as many
others. Each project is treated as analyzing job which is supported with different kind of analyzers like boolean,
number, character set, value distribution analyser and several others. Beside analyzers very important part of
Data Cleaner are transformation and query capabilities (see figure 3.7).

Figure 3.7: DataCleaner in action.

DataCleaner is tool also designed to clean up and optimize commercial CRM Systems like Salesforce10

or SugarCRM11 and it is widely used within enterprises. One of the most impressive features are various
possibilities to visualize results as shown in figure 3.8 for more profound analytics.

10http://www.salesforce.com/
11http://www.sugarcrm.com/

3.6. ONLINE TOOLS AND SERVICES 21

Figure 3.8: DataCleaner results visualization.

3.6 Online Tools and Services

In this section we introduce shortly some alternatives to off-line cleaning tools exposed as web applications or
web based services designed for the same purpose.

3.6.1 Wrangler

Data Wrangler12 is a web-based service from Stanford University’s Visualization Group which allows interac-
tive cleaning and transformation of data for further analysis from Microsoft Excel (CSV, TSV), R, Protovis,
and some other text based formats formats. With Wrangler, users can specify transformations by building up
a sequence of basic transforms. Actions emerge as users select data. Based upon context of interaction Wran-
gler suggests the user applicable transforms. To ensure relevance, Wrangler enumerates and ranks possible
transforms using a model which reflects user input with the frequency, diversity, and specification difficulty of
applicable transform types available. To convey the effects of data transforms, Wrangler provides short natural
language descriptions which users can refine via interactive parameters and visual previews of transformation
results. These techniques enable users to rapid assessment of transforms. During the transformation in between
steps are recorded in a script to facilitate reuse and provide documentation of data origins. Hereby Wrangler’s
interactive history viewer supports review, refinement, and annotation of results. Wrangler is able to infer reg-
ular expressions from example selections and supports mass editing, uses semantic roles, and provides natural
language descriptions of transforms. Underlying the Wrangler interface is a declarative data transformation
language consisting out of following functionalities:

• Map transforms

• Lookups and joins

• Reshape transforms

• Positional transforms

• Sorting

• Aggregation (for instance sum, min, max, mean, standard deviation)

• Key generation

• Schema transforms

In figure 3.9 a sample screen shot from Data Wrangler interface is shown together with the history panel on
the left.

12http://vis.stanford.edu/wrangler/

22 CHAPTER 3. DATA CLEANING

Figure 3.9: Data Wrangler interface in use.

3.6.2 Data8

Data813 is a solutions provider from UK with a range of data cleansing, postcode lookup and data validation
services. Online data cleansing service from Data8 include:

• Gone Away Suppression - removing non-responders from mailings.

• PAF Cleansing - improving data’s address quality.

• Telephone Appending - finding telephone numbers from customer data.

• Postcode Lookup - capturing address details quickly and accurately.

3.6.3 AddressDoctor

AddressDoctor14 AddressDoctor is a bunch of commercial tools for addresses disambiguation. Beside off-
line solutions this company offers also a web service solution. AddressDoctor’s Web Services offer users the
opportunity to correct addresses in the Cloud without installing software. AddressDoctor operates its Web
Services on high-availability clusters using the powerful AddressDoctor correction technology. Equipped with
a SOAP interface, these Web Services can be quickly integrated into a user’s own applications, CRM systems,
online shops and websites .Addresses are corrected in very short time and transmitted over secure (SSL) links.
Users automatically benefit from the latest reference data and up-to-the-minute supplemental content such as
geo codes or consumer segmentation.

3.7 Challenges and Problems

Data cleaning process is applied mostly with different intension and within different areas of the data integration
and management process. It is defined as the sequence of operations intending to enhance to overall data quality
of a data collection. However, current research delivered only a rough description of the procedure, therefore
data cleaning as it is remains highly domain dependent task. There is still wide set of problems and challenges
in data cleaning that are not solved up to now by the existing approaches. Most important of them are described
more into detail in following subsections:

13http://www.data-8.co.uk/
14http://www.addressdoctor.com/

3.7. CHALLENGES AND PROBLEMS 23

3.7.1 Error Correction

Error Correction is most challenging problem within data cleaning. In this domain of problems belong: the
correction of values to eliminate domain format errors, constraint violations, duplicates and invalid tuples.
In many cases the available information and knowledge is insufficient to determine the correct modification
of data tuples to remove these anomalies. Currently the only practical solution for this problem is deleting
affected tuples. This deletion of tuples in consequence leads to a loss of information if the tuple is not invalid
as a whole. One of the approaches how loss of information can be avoided would be by keeping the tuple in the
data collection and masking the erroneous values until appropriate information for error correction is available.

3.7.2 Maintenance of Cleaned Data and Impact on Costs

Cleaning data is a time consuming and expensive task. After having performed data cleaning and achieved a
data collection free of errors one does not want to perform the whole data cleaning process again after some
of the values in data collection change. Only the part of the cleaning process which is affected by the changed
value should be re-started. This affection can be determined by analyzing the cleaning history. In order to
avoid re-running unaffected steps cleaning history is kept not only for tuples that have been corrected, but also
for those that have been verified as correct within the cleaning process. After one of the values in the data
collection has changed, the cleaning work flow has to be repeated for those tuples that contains the changed
value as part of their cleaning lineage. Respecting these procedures can contribute to easier maintenance and
decrease data cleaning costs.

Chapter 4

Selected Examples

A survey paper turns out to be more useful for a reader if the paper includes real-life examples. Therefore in
the current chapter we provide example-solutions for ficitve use-cases. Use-case "A" deals with crawling of
twitter-messages of the hash-tag "#tugraz" and is provided in the subsection "Crawling Twitter Feed". Use-case
"B" deals with the problem of gathering data made public as PDF files what is known as "scraping".

"When you’re looking for data to use in your own applications, you may find it’s not always
in the format you want. Government sites in particular are famous for publishing PDFs instead of
raw data which is easier to parse." [Rotter, 2013]

According to this problem an example, how to transform a table extracted from a PDF file to CSV format,
is shown using an annual report PDF file from "Holding Graz - Kommunale Dienstleistungen GmbH"1. As the
data in the CSV still is "dirty" it will be shown how to clean it using the tool "OpenRefine" in the subsection
"OpenRefine" within the section Data Cleaning.

4.1 Data Harvesting

4.1.1 Crawling Twitter Feed

The following is an example which deals with crawling of twitter-messages of the hash-tag "#tugraz". For
easy reuse without the need of installing tools locally an on-line web-crawler development website called
"Scraperwiki"2 was chosen. The functionality to write code on-line either in Python, PHP or ruby is provided.
The possibility to pay for writing a crawler is provided too, however this is not in the paper focus. For this
example "write code" and afterwards "Python" as the language to write in was chosen. The code used was
found on the Scraperwiki website [Poitras, 2013] and was customized to deal with tweets about the hash-tag
"#tugraz".

The listing4.1 shows the code. Lines 1-3 import some packages used. In lines 7-11 customizations can be
done by changing the following variable-values:

• QUERY: The keywords to search for, or, because twitter uses hash-tags to mark keywords or topics in a
Tweet, a hash-tag.[Twitter, 2013b]

• RESULTS_PER_PAGE: The number of results per page.

• RESULT_TYPE: Specifies what type of search result is preferred to receive. Valid values: "recent",
"popular" or "mixed", where "mixed" is a mixture of popular and most recent tweets. [Twitter, 2013a]

• NUM_PAGES: The number of pages. The script stops when all pages are filled with data.
1http://www.holding-graz.at/holding-graz/unternehmen/geschaeftsbericht.html, online 2013-05-13
2https://scraperwiki.com/

24

4.1. DATA HARVESTING 25

• ENTITIES: When set to either true, t or 1, each tweet will include a node called "entities,". This node
offers a variety of metadata about the tweet in a discrete structure, including: urls, media and hashtags.
[Twitter, 2013a]

Lines 13-15 builds and sends the query to the Twitter-API. Lines 16-31 try to receive the response and parse it.
Line 28 saves the gathered information to the in-built database of the Scraperwiki website.

1 import scraperwiki
2 import simplejson
3 import urllib2
4
5 # Change QUERY to your search term of choice .
6 # Examples : ’newsnight ’ , ’from :bbcnewsnight ’ , ’to :bbcnewsnight ’
7 QUERY = ’#tugraz ’
8 RESULTS_PER_PAGE = ’100 ’
9 RESULT_TYPE = ’recent ’

10 NUM_PAGES = 14
11 ENTITIES = ’true ’
12
13 for page in range (1 , NUM_PAGES+1) :
14 base_url = ’http : / / search .twitter .com /search .json?q=%s&rpp=%s&page=%s&

result_type=%s&include_entities=%s ’ \
15 % (urllib2 .quote (QUERY) , RESULTS_PER_PAGE , page , RESULT_TYPE ,

ENTITIES)
16 try :
17 results_json = simplejson .loads (scraperwiki .scrape (base_url))
18 for result in results_json [’results ’] :
19 #print result
20 data = {}
21 data [’id ’] = result [’id ’]
22 data [’text ’] = result [’text ’]
23 data [’from_user ’] = result [’from_user ’]
24 data [’created_at ’] = result [’created_at ’]
25 data [’geo ’] = result [’geo ’]
26 data [’entities ’] = result [’entities ’]
27 print data [’from_user ’] , data [’text ’] , data [’geo ’] , data [’entities

’]
28 scraperwiki .sqlite .save ([" id "] , data)
29 except :
30 print ’Oh dear , failed to scrape %s ’ % base_url
31 break

Listing 4.1: Use-case "A" - crawling a twitter feed

4.1.2 Extracting Tables from PDF

As the last example showed how to crawl Twitter-messages the following example deals with a difficult and
probably everyday problem of, for example, journalists, when they use published government data. The prob-
lem is, that the data is not available in a convenient format, for example: copying and pasting of a table out
of a PDF file probably leads to blank rows, null values or wrong data-types like integer represented as string.
Copying some tables out of a PDF file by hand can be time consuming whereas a script may save time. The
following shows an example how to scrape a balance-report table out of the 2011 annual report of the "Holding
Graz - Kommunale Dienstleistungen GmbH" which is placed on the pages 74 and 75. Firstly a binary program
is used to transform given pages of the PDF file to XML. In the program call "file.pdf" is the PDF file and
should be changed to the file-name of the downloaded file. The integer value after the "-f" command is the

26 CHAPTER 4. SELECTED EXAMPLES

starting page, the integer after the "-l" command is the last page, all pages in-between including first and last
page will be transformed. The program is called "pdftohtml"3 and is used in the following way to transform
pages 74 to 75:

32 pdftohtml −f 74 −l 75 −xml −stdout file .pdf

Listing 4.2: Use-case "B" - command line: transform PDF page to XML - part 1

Secondly the XML has to be parsed which is done with a Python package called "pdftable"4. The package
detects tables in XML files, parses the table data and finally outputs the data to a CSV file - one file for each
different table detected. If a table is split over 2 pages it detects this one as 2 different tables and therefore
outputs 2 CSV files. As the package was written for Python 2.7 some changes for Python 3 had to be made.
The package takes the XML produced in part 1 as input, therefore the whole process is combined into a single
command:

33 pdftohtml −f 74 −l 75 −xml −stdout file .pdf | python pdftable −f file%d .csv

Listing 4.3: Use-case "B" - command line: PDF table to CSV file - part 2

4.2 Data Cleaning

Data Cleaning is a process to transform a given dataset to a cleaned version of it. Data Cleaning is used to
eliminate empty rows, null values, merge similar columns which where divided while harvesting, filter or sort
the dataset, edit the data to eliminate misspellings, transform it to another format, etc. Theory and available
Tools are already described in the Data Cleaning chapter, therefore this part shows how to use one of those
tools: OpenRefine5.

4.2.1 OpenRefine

To use OpenRefine the latest stable version (current stable version is 2.5 and still has the old branding Google
Refine, will change with next version) is downloadable as ZIP-compressed file. Unzip it and run the executable
file. The program is launched and the landing-page is shown in the standard web-browser. The program runs
locally, therefore no need for fear of data-loss. "Get data from This Computer" is chosen.

Annual Report - Graz Holding

This example deals with the CSV files produced in subsection 4.1.2. The purpose is to eliminate blank rows
and header-rows at first to be able to perform filtering tasks in advance. At the beginning the file is loaded,
here for simplicity just "file1.csv" of the 2 available files is chosen, but it is possible to load more than one file
simultaneously. Clicking on the "Next" button leads the user to the data-parsing view, shown in figure 4.1. At
the data-parsing view useful features are provided, in the example the following features are used (from left to
right):

• Parse data as: As a CSV file was imported, "CSV / TSV / separator-based files" was chosen.

• Columns are separated by: As a CSV file was imported, "commas (CSV)" was chosen.

• Parse next: As the extracted table starts with header-titles at row 1 and 3 selecting this option was
chosen and the value was set to 3.

3http://pdftohtml.sourceforge.net/, online 2013-05-05
4http://pdftable.sourceforge.net/, online 2013-05-20
5http://openrefine.org/, online 2013-05-10

4.2. DATA CLEANING 27

Figure 4.1: Data Parsing after loading a CSV file with OpenRefine.

• Store blank rows: The dataset contains blank rows, therefore this option was unselect.

Clicking on "Create Project" lead us to the working area. It is recognized that there are rows with a blank
cell in column 0, in the example called "7.2 KONZERN-GEWINN-UND-VERLUSTRECHNUNG ZUM 31.
DEZEMbER 2011", and a sum in column 1 and 2, in the example called "2011 in" and "2010 in T". Those
values are the aggregated sums of the regarding section of the balance report. To edit the cell-name of those
sum-rows in column 0 the following has to be done:

• Clicking the drop-down button at column 0 opened up a menu.

• Firstly "Facet" and secondly "Text Facet" in the sub-menu had to be chosen. The Facets available had
been opened on the left side of the screen in the "Facet/Filter" box.

• Scrolling down until the entry "(blank)5" and mouse-hovering showed an edit-button to click on as shown
in figure 4.2. The edit button was clicked.

• Entering a new Name for the cells, for example: Section Sum and clicking on the "Apply" button lead to
a change in all affected cells.

Once this is done filtering the data to just display rows with negative values is the next task. Therefore the
drop-down button at column "2011 in" is clicked and Text filter from the menu is chosen. A new box was
opened in the Facet/Filter area. Selecting the regular expression option and typing "ˆ" into the text-field filters
the data-set to display negative values. To save the changed table, exporting in various formats is provided.

Open Data sample with Graz Residents Data

As the example of the annual report of Holding Graz was rather small due to the number of rows for this example
data of Graz city is used. The data is provided on the website "http://data.graz.gv.at", the purpose of the group
in charge is to make public data available for the public. The used dataset about habitants of the Graz-districts
divided into citizenship is downloadable as a CSV file (source: http://data.graz.gv.at/daten/package/die-grazer-
bev-lkerung-nach-bezirk-und-staatsabgeh-rigkeit). The dataset has 124528 rows of data, including monthly
data about the years 2006 until 2013. A journalists job could be to show the trend of amount of habitants that
live in Lend or Gries with french citizenship. To eliminate typical season-related up- and downturns just data
of the month January is used. The following list shows how to do it:

28 CHAPTER 4. SELECTED EXAMPLES

Figure 4.2: Data editing with OpenRefine.

• CSV file has to be downloaded and loaded with OpenRefine, for details see 4.2.1.

• In the parsing view "custom", value is ";" was chosen for "the Columns are separated by". Parse next
was selected, the corresponding value is 1. Project was created.

• The drop-down button at column called "Berzirksname" was clicked and the term "Facet" in the menu
and the term "Text Facet" in the submenu were chosen. Text facet was opened up in "Facet/Filter" box.

• Searching for "Gries" and mouse-over the word made the buttons "edit" and "include" visible. Clicking
on "include" and the same for the district "Lend" added the terms to the filter.

• Opening the "Text Facet" for "Staatsbuergerschaft" too and clicking or "include" "Frankreich" added this
part to the filter.

• Opening the "Text Facet" for "Stichtag" too and including every date which corresponds to January by
clicking on the "include" button added this part to the filter.

• Finally clicking on the dropdown button of "Bezirksname" and choosing "Sort" from the menu, followed
by choosing sorting values as "text" and the option "a-z" lead to the result shown in figure 4.3 and can be
exported in various formats.

4.2. DATA CLEANING 29

Figure 4.3: Data Filtering with OpenRefine.

Bibliography

Abiteboul, Serge et al. [1999]. “Tools for data translation and integration”. IEEE Data Engineering Bulletin
22.1 (1999), pages 3–8. http://sites.computer.org/debull/99mar/99MAR-CD.pdf#page=5
(cited on page 17).

Gatterbauer, W. [2009]. Encyclopedia of Database Systems. DBLP, 2009, pages 3472–3473 (cited on pages 3,
5).

Gray, Matthew [1995]. “Measuring the Growth of the Web June 1993 to June 1995” (1995). http://www.
mit.edu/people/mkgray/growth/ (visited on 05/18/2013) (cited on page 4).

Maletic, Johnatan I. and Andrian Marcus [2000]. “Data cleansing: Beyond integrity analysis”. In: Proceedings
of the Conference on Information Quality. 2000, pages 200–209 (cited on pages 16, 17).

Manning, C.D., P. Raghavan, and H. Schütze [2008]. Introduction to Information Retrieval. An Introduction to
Information Retrieval. Cambridge University Press, 2008. ISBN 9780521865715 (cited on pages 4, 5).

Motro, Amihai [1989]. “Integrity is validity plus completeness”. ACM Transactions on Database Systems
(TODS) 14.4 (1989), pages 480–502. ISSN 0362-5915. http://doi.acm.org/10.1145/76902.76904
(cited on page 14).

Müller, Heiko and Johann-Christoph Freytag [2003]. Problems, Methods and Challenges in Comprehensive
Data Cleansing. Technical Report HUB-IB-164. Humboldt-Universität zu Berlin, Institut für Informatik,
2003. http : / / www . dbis . informatik . hu - berlin . de / fileadmin / research / papers /
techreports/2003-hub_ib_164-mueller.pdf (cited on pages 13–16).

Naumann, Felix [2002]. Quality-driven query answering for integrated information systems. Berlin, Heidel-
berg: Springer-Verlag, 2002. ISBN 3-540-43349-X (cited on page 14).

Peshave, Monica [2005]. “How Search Engines Work and a Web Crawler Application” (2005) (cited on page 6).

Poitras [2013]. Poitras, Twitter API - ScraperWiki. May 13, 2013. http://scraperwiki.com/scrapers/
twitter_api_7/ (visited on 05/13/2013) (cited on page 24).

Rahm, Erhard and Hong Hai Do [2000]. “Data Cleaning: Problems and Current Approaches”. IEEE Bulletin
of the Technical Committee on Data Engineering 23.4 (2000), pages 3–13. http://sites.computer.
org/debull/A00DEC-CD.pdf (cited on page 14).

Raman, Vijayshankar and Joseph M. Hellerstein [2001]. “Potter’s Wheel: An Interactive Framework for Data
Cleaning and Transformation”. In: Proc. International Conference on Very Large Data Bases (VLDB).
2001. http://www.vldb.org/conf/2001/P381.pdf (cited on page 16).

Rotter, Martha [2013]. TUTORIAL: Data Scraping for N00bs. May 14, 2013. http://readidea.com/
magazines/issue4/scraperwiki.html (visited on 05/14/2013) (cited on pages 1, 24).

Tonn, Daniel [2000]. “Data Cleansing Verfahren für Data Warehouses”. Master’s thesis. Berlin: Humboldt
University, 2000 (cited on page 14).

30

http://sites.computer.org/debull/99mar/99MAR-CD.pdf#page=5
http://www.mit.edu/people/mkgray/growth/
http://www.mit.edu/people/mkgray/growth/
http://www.amazon.com/exec/obidos/ASIN/9780521865715/
http://worldcatlibraries.org/wcpa/issn/0362-5915
http://doi.acm.org/10.1145/76902.76904
http://www.dbis.informatik.hu-berlin.de/fileadmin/research/papers/techreports/2003-hub_ib_164-mueller.pdf
http://www.dbis.informatik.hu-berlin.de/fileadmin/research/papers/techreports/2003-hub_ib_164-mueller.pdf
http://www.amazon.com/exec/obidos/ASIN/3-540-43349-X/
http://scraperwiki.com/scrapers/twitter_api_7/
http://scraperwiki.com/scrapers/twitter_api_7/
http://sites.computer.org/debull/A00DEC-CD.pdf
http://sites.computer.org/debull/A00DEC-CD.pdf
http://www.vldb.org/conf/2001/P381.pdf
http://readidea.com/magazines/issue4/scraperwiki.html
http://readidea.com/magazines/issue4/scraperwiki.html

BIBLIOGRAPHY 31

Twitter [2013a]. GET search - Twitter Developers. May 18, 2013. http://dev.twitter.com/docs/api/
1/get/search (visited on 05/18/2013) (cited on pages 24, 25).

Twitter [2013b]. Using hashtags on Twitter. May 18, 2013. http://support.twitter.com/articles/
49309-using-hashtags-on-twitter# (visited on 05/18/2013) (cited on page 24).

http://dev.twitter.com/docs/api/1/get/search
http://dev.twitter.com/docs/api/1/get/search
http://support.twitter.com/articles/49309-using-hashtags-on-twitter#
http://support.twitter.com/articles/49309-using-hashtags-on-twitter#

	1 Introduction
	2 Data Harvesting
	2.1 Motivation and Definition
	2.2 Web Crawler
	2.2.1 Definition
	2.2.2 Purposes

	2.3 Scraping
	2.3.1 Data Scraping vs. Regular Parsing
	2.3.2 PDF Scraping
	2.3.3 HTML Scraping

	2.4 Tools and Techniques
	2.4.1 Scraper Wiki
	2.4.2 pdftohtml
	2.4.3 pdftable
	2.4.4 htmltable

	2.5 Challenges and Problems

	3 Data Cleaning
	3.1 Motivation and Definition
	3.2 Data Quality
	3.3 Data Quality Criteria
	3.4 Data Cleaning process
	3.4.1 Main Steps
	3.4.2 Popular Methods

	3.5 Off-line Tools
	3.5.1 OpenRefine
	3.5.2 Potter's Wheel A-B-C
	3.5.3 Easy Data Clean
	3.5.4 DataCleaner

	3.6 Online Tools and Services
	3.6.1 Wrangler
	3.6.2 Data8
	3.6.3 AddressDoctor

	3.7 Challenges and Problems
	3.7.1 Error Correction
	3.7.2 Maintenance of Cleaned Data and Impact on Costs

	4 Selected Examples
	4.1 Data Harvesting
	4.1.1 Crawling Twitter Feed
	4.1.2 Extracting Tables from PDF

	4.2 Data Cleaning
	4.2.1 OpenRefine

	Bibliography

