
A Taxonomy of Force-Directed Placement
Techniques

Faruk Bajramovic
Arne Tauber

Ralph Wozelka
Wörister Ferdinand

Contents

Contents i

1 Introduction 1

1.1 Force Directed Placement in Graph Drawing 2
1.2 Multidimensional Scaling . 3
1.3 Graphical Taxonomy . 4

2 First Force-directed Graph Layout Algorithms 6

2.1 The Barycentric Method . 6
2.2 VLSI Layout Algorithms . 7

3 Basic force-directed techniques 9

3.1 Spring Forces - Eades (1984) 9
3.2 Graph Theoretic Distance - Kamada and Kawai (1989) 10
3.3 Magnetic Fields - Sugiyama and Misue (1995) 12
3.4 Simulated Annealing - Davidson and Harel (1996) 13
3.5 Genetic Algorithms . 14

4 Improvements 15

4.1 Fruchterman and Reingold (1991) 15
4.2 Frick et al. (1995) . 16

5 Multi-level Algorithms 18

6 Multi-dimensional Scaling using FDP 19

6.1 Chalmers ’96: O(N2) [O(N)] 20

6.2 Morrison et al.’02: O(N
3
2) [O(N)] 20

6.3 Morrison et al.’04: O(N
5
4) [O(N)] 20

6.4 Jourdan et al.’04: O(N log n) [O(N)] 21
6.5 Ingram et al.’09: O(N2) GPU-based, massively parallel . . . 22

7 Visual Comparison of Selected Graph Drawing Techniques 23

7.1 Different Visualization of the Same Graph Drawn using Dif-
ferent Algorithms . 23

7.2 Comparative Data . 23

8 References 28

1 Introduction

In the ’Silicon Age’, the amount of information available at our fingertips
has reached an unprecedented scale. The Internet, providing ubiquitous
access to information from around the world is justifiedly seen as a develop-
ment on par with the intruduction of the printing press. However, whereas
technology can cope with these staggering amounts of information, to hu-
mans it increasingly constitutes a challenge. Presented in form of a table,
humans lack the ability to quickly grasp the similarities and dissimilarities
of datapoints within a dataset.

However, ’a picture is worth a thousand words’. Our brain has evolved
over thousands of years sophisticated techniques that allow us to quickly in-
fer meaning from visual patterns. Thus the transformation of such datasets
into geometric representations provides humans with a much easier way of
coping with large datasets than e.g. table-based representations.

Figure 1: Multimensional Scaling is a class of techniques mapping objects into
one-, two- or three dimensional space, based on their (dis)similarity amongst each
other. These relationships can be expressed using a matrix structure, referred to a
Similarity Matrix. The multidimensional feature space is condensed into a matrix
shown on the left side. The matrix’ columns and rows represent the records within
a high-dimensional dataset, its cells contain the similarity measure between pairs of
individual records. Force-Directed Placement can be used to position the individual
nodes within the graph.

In this paper we focus on ’force-based’ solutions to the problem of visu-
alizing sets of data items in {1, 2, 3}-dimensional space.

In order to obtain a layout of data items in such low-dimensional spaces,
virtual forces between the location of the items are introduced (attractive
and/or repelling ones) which are proportional to the distance between items
in a layout. These forces generally act as a metric to measure how well the
location of items in the layout captures their relationship from within their
original representation. Such relationships might stem, e.g., from a graph
structure connecting the data items, or from distance calculations between
items in high-dimensional spaces.

1

Such approaches can be subsumed under the category of Force-Directed
Placement Techniques.

In our survey we identify two two main areas of the field, the visualization
of partial graphs, and the visualization of high-dimensional datasets (full
graphs).

The former deals with calculating layouts of simple, connected, unidi-
rected graphs. Force-directed algorithms belong to the most flexible algo-
rithms to perform this task (cf. Kobourov (2007)). Good surveys can be
found in Battista, Eades, Tamassia, and Tollis (1999) and Brandes (2001).

The latter deals with visualizing data items from high-dimensional fea-
ture spaces. Commonly, this problem is tackled by reducing the number
of dimensions. This then facilitates the application of layouting techniques
suitable for low-dimensional data (such as graph drawing techniques). Mul-
tidimensional Projection is one method that can be used to for that. It
usually maps data from Rm to Rn where n � m and n ∈ {1, 2, 3}. Exam-
ples of such datasets are (large) document collections, bibliographies, or e.g.
voting behaviour.

This set of techniques can be separated into Linear and Non-Linear
Projection Techniques.

Linear techniques include most prominently Principal Component Anal-
ysis (PCA) which combines dimensions into a new set of orthogonal basis
vectors capturing directions of maximum variation. The lowest dimensions
are then used to create the layout. But, in general, linear methods can-
not guarantee to capture non-linear structures, such as arbitrarily shaped
clusters.

Non-Linear techniques on the other hand are more suitable for this task.
However, to achieve high precision is often computationally expensive (cf.
Paulovich, Nonato, Minghim, and Levkowitz (2008)).

Such techniques are designed to minimise the information loss incurred
by the projection to low-dimensional space. Commonly, the cost function
involved is based on a metric describing the (dis)similarity of data items in
Rm and their (Euclidian) distance in Rn.

On such non-linear projection technique is Multidimensional Scaling
(MDS). For a general discussion see Cox and Cox (2001) or Borg and Groe-
nen (2005).

Below in section 1.1 and 1.2 we shortly discuss Force-Directed Placement
and Multidimensional Scaling in further detail.

1.1 Force Directed Placement in Graph Drawing

Force-based graph drawing algorithms are techniques of positioning the
nodes of a graph in two- or three dimensional space in an aesthetically
pleasing way.

2

Fundamentally, they simulate repulsive and attractive forces between the
graph’s nodes. We quote Kobourov (2007):

In general, force-directed methods define an objective func-
tion which maps each graph layout into a number in R+ repre-
senting the energy of the layout. This function is defined in such
a way that low energies correspond to layouts in which adja-
cent nodes are near some pre-specified distance from each other,
and in which non-adjacent nodes are well-spaced. A layout for
a graph is then calculated by finding a (often local) minimum of
this objective function.

1.2 Multidimensional Scaling

Multimensional Scaling is a class of techniques mapping objects into one-,
two- or three dimensional space, based on their (dis)similarity among ea-
chother. The correlation between data points is represented by their geo-
metric proximity. This technique provides a way of quickly achieving an
overview of the ’hidden’ information within a dataset.

Cox and Cox (2001) consider reconstructing a map from a table of dis-
tances between cities a classic example of Multimensional Scaling. Apart
from this example, Kruskal and Wish (1978) illustrate Multimensional Scal-
ing as a method that allows condensing data about political candidates into
a map, thus providing a spatial representation of the hidden structure within
the dataset (partisanship, ideology, etc.). Often, yet not necessarily, Mul-
timensional Scaling relies on a so-called Similarity Matrix (see Figure 1).
Its columns and rows represent certain records within a dataset, its cells
represent the similarity between individual datarecords.

In this paper we intend to present an overview of MDS methods that
are based on Force-Directed Placement. Hence, in that sense, FDP can be
considered a subset of Multimensional Scaling.

Quoting Tejada, Minghim, and Nonato (2003) on a formal description
of multimensional projection:

Formalizing the concept of distance-based multidimensional
projections, let X = {x1, x2, . . . , xn} be a set of m-dimensional
data, with δ(xi, xj) a dissimi- larity (distance) measure between
two m-dimensional data instances, and let Y = {y1, y2, . . . , yn}
be a set of points into a n-dimensional space, with n = {1, 2, 3}
and d(yi, yj) a (Euclidean) distance between two points of the
projected space. A multidimensional projection technique can be
described as a injective function f : X → Y that seeks to make
|δ(xi, xj)− d(f(xi), f(xj))| as close to zero as possible, ∀xi, xj ∈
X.

3

If we want apply FDP (e.g.the spring force model of Eades (1984) dis-
cussed in section 3.1) as a MDS technique, the forces must be made propor-
tional to the difference between the (dis)similarity between items δ(xi, xj)
and their distances (.f(xi), f(xj)) in low-dimensional space Rn, f denoting
the multi-dimensional projection step (cf. Paulovich et al. (2008)).

Force-Directed Placement can be used in the context of MDS to calculate
the layout of the resulting graph based upon the (dis)similarity inbetween
high-dimensional feature vectors.

In the following section, we present two early force-directed drawing
algorithms that have infuenced modern algorithms such as those presented
in chapters three and four. Chapter three presents an overview of the basic
concepts and methods applied in the field of Force-Directed Graph Drawing,
whereas the latter chapter four presents improvements upon these earlier
contributions. In chapter five, we present a technique particularly suited for
large graphs - Multi-Level Algorithms.

In Chapter 6 we focus on the applications of Force-Directed Placement
in multidimensional scaling, that is, visualisation of high-dimensional data
sets.

1.3 Graphical Taxonomy

In this section you can find a condensed graphical version of our taxonomy
in Figure 2 .

4

Figure 2: A graphical taxonomy of Force-Directed Placement techniques in graph
drawing and general Multidimmensional Scaling and how they relate to each other.

5

2 First Force-directed Graph Layout Algorithms

Algorithms using force-directed placement have already been described be-
fore the ones using spring forces as first introduced by Eades (1984). Tutte’s
barycentric method can be seen as the first ”force-directed”’ algorithm. We
discuss this algorithm in the first subsection. However, force-directed place-
ment was also applied in the context of VLSI design in the 1960’s and 1970’s.
Fisk and Caskey described in 1967 an automated circuit card etching layout
algorithm based on force-directed placement. In 1979 Quinn and Breur de-
scribed a force-directed component placement procedure for printed circuit
boards. We discuss the basic idea behind the latter methods in subsection
2.

2.1 The Barycentric Method

Tutte (1963) described a barycentric method to draw an aesthetic pleasing
graph. Historically, this method can be considered as the first force-directed
placement algorithm. In case Tutte’s algorithm is applied to 3-connected
planar graphs, it guarantees that the resulting graph is crossing-free (plane
convex drawing of the graph).

Definition of triconnected graph: A connected graph such that deleting
any two vertices (and incident edges) results in a graph that is still
connected.

Tamassia (2007) describes the idea behind Tutte’s algorithm in chapter
5.3 as

”...Tutte’s algorithm is that if a face of the planar graph is
fixed in the plane, then suitable positions for the remaining ver-
tices can be found by solving a system of linear equations, where
each vertex position is represented as a convex combination of
the positions of its neighbours. This can be considered a force-
directed method...”

Tutte’s model uses springs of ideal length zero and no repulsive forces.
The force resulting from an edge (u,v) is proportional to the distance be-
tween u and v. The force at a vertex v is calculated as follows:

F (v) =
∑

(u,v)∈E

pu − pv

Where pu and pv are the positions of vertices u and v. The time com-
plexity to solve the equations is O(n1,5).

6

Figure 3: A large planar graph drawn with the barycenter method (Taken from
Battista (1999)

2.2 VLSI Layout Algorithms

Fisk, Caskey, and West (1967) described in 1963 a computer program called
ACCEL: Automated Circuit Card Etching Layout. The aim of ACCEL was
to reduce the time needed to design printed circuit boards and was developed
jointly by Sandia Corporation and the Thomas Bede Foundation. ACCEL
can handle components with up to four leads. Fisk and Caskey describe
their method of component layout on the board as ”force placement”.

Figure 4: Example of VLSI components to be layouted (Taken from Fisk and
Caskey)

They describe the basic concept behind this force-based placement as

7

follows. Consider the component C1 in Figure 4. C1 is connected to R2,
P1 and Q1. For an efficient layout, these components should be located
together. In order to ensure this, these components are assigned ”physical
forces of attraction” to be pulled together. Forces are limited to not disturb
the layout of other components and are calculated in a way that overlapping
of components is prevented.

Futher force-directed placement techniques of VLSI components have
been described by Scanlon (1971) and Crocker, McGuffin, and Naylor (1972).
Since each of the three mentioned methods has some technical shortcoming,
Quinn and Breur (1979) described a force directed component placement
procedure for printed circuit boards refining the mentioned techniques to
remove these shortcomings. The method of Quinn and Breur consists of
two phases: phase 1 is called the ”relative location phase” and phase 2 is
called the ”slot assignment or component overlap resolution phase”. Phase
1 deals with determining the correct relative position of a component to
each other component. Phase 2 determines the real location of components
by taking overlaps into account.

8

3 Basic force-directed techniques

In this section we discuss some basic force-directed techniques. Eades and
Tamassia (1988) introduced a first method using a spring model. Based on
this basic idea, other approaches using graph theoretic distances, magnetic
fields, simulated annealing or genetic algorithms have been proposed.

3.1 Spring Forces - Eades (1984)

The algorithm of Eades evolved from the VLSI force-directed placement
techniques discussed in 2.2. It is designed to handle graphs up to 30 vertices
and to produce an ”aesthetically” undirected graph. According to Eades
and Tamassia (1988) the following criteria are generally considered as being
aesthetic:

• Distribute the vertices evenly in the frame.

• Minimize edge crossings.

• Make edge lengths uniform.

• Reflect inherent symmetry.

• Conform to the frame.

Figure 5: A spring algorithm (Taken from Battista (1999)

We quote Tamassia (2007), who summarizes Eades algorithm as follows:

To embed [lay out] a graph we replace the vertices by steel
rings and replace each edge with a spring to form a mechanical
system. The vertices are placed in some initial layout and let
go so that the spring forces on the rings move the system to a
minimal energy state. Two practical adjustments are made to
this idea: firstly, logarithmic strength springs are used; that is,
the force exerted by a spring is:

c1 ∗ log
(
d

c2

)

9

where d is the length of the spring, and c1 and c2 are con-
stants. Experience shows that Hookes law (linear) springs are
too strong when the vertices are far apart; the logarithmic force
solves this problem. Note that the springs exert no force when d
= c2. Secondly, we make nonadjacent vertices repel each other.
An inverse square law force,

c3√
d

where c3 is constant and d is the distance between the vertices, is suit-
able.

From the description above we can see that Eades modeled a graph as a
system of rings and springs. However, Eades did not apply Hooke’s law to
his model. In mechanics and physics Hooke’s law of elasticity states that:

F = −k ∗ x
where x is the deformation of the elastic body due to the force F, and k

is the spring constant. Eades applied his own model to describe the forces
in this spring-based system. This is not the only deviation from the phys-
ical model. In Eades’s model, repulsive force are calculated between all
vertices, whereas attractive forces are applied and calculated only between
neighboring vertices.

From the efficiency perspective, the time complexity of calculating at-
tractive forces is O(n), however, the calculation of all repulsive forces still
remains O(n2).

Figure 6: Frames in an animation of a spring algorithm (Taken from Battista
(1999)

3.2 Graph Theoretic Distance - Kamada and Kawai (1989)

Like Eades, Kamada and Kawai (1988, 1989) have proposed a force-directed
placement algorithm based on a spring model. Whereas Eades uses its own
logarithmic function instead of Hooke’s law, Kamada and Kawai use a graph
theoretic distance approach as quoted below:

We regard the desirable geometric (Euclidean) distance be-
tween two vertices in the drawing as the graph theoretic distance
between them in the corresponding graph.

10

Figure 7: Graph drawn using a simple spring algorithm (Taken from Battista (1999)

Their model relies on achieving a good graph layout by minimizing the
pair-wise difference between the geometric (Euclidean) and graph theoretic
distance of connected vertices, i.e. we have only attractive forces between
all adjacent nodes. The ”ideal” or graph theoretic distance between two
vertices is calculated through a shortest-path algorithm. In contrast to the
model of Eades, the model of Kamada and Kawai does not have attractive
and repulsive forces in terms of a physical force. Instead we have geometric
distances that are smaller or larger than their graph theoretic distances.

The overall energy E of their system is calculated as follows:

E =
n−1∑
i=1

n∑
j=i+1

1
2
ki,j (|pi − pj | − li,j)

where pi is the position of vertex vi ∈ V. ki,j is the spring constant
between pi and pj , i.e. the strength of the spring between the two vertices.
li,j is the ”ideal” graph theoretic distance between the two vertices.

The model relies on the assumption that the graph-drawing problem can
be solved by minimizing the total energy, i.e. minimizing the compression
or tension on all springs. By doing so, the vertices would be laid out in a
way that the difference between the geometric and graph theoretic distance
would be minimal. The minimal energy can be calculated by solving 2n
differential equations using the Newton-Raphson method.

11

Regarding efficiency, the algorithm of Kamada and Kawai is quite ex-
pensive. The calculation of the shortest paths can be done in O(n3) using
the Floyd-Warshall algorithm or in O(|E| ·N) using the Breath-First search.

3.3 Magnetic Fields - Sugiyama and Misue (1995)

Sugiyama and Misue (1995a, 1995b) extended the spring model by introduc-
ing magnetic fields acting on the springs, i.e. the springs are magnetized.
This approach allows to control the orientation of the spring with the mag-
netic field and thus to have more control on the aesthetic look-and-feel of
the resulting output.

Springs can be magnetized in in different ways (unidirectional, bidirec-
tional, not at all) and usually there are three types of magnetic fields acting
on the springs:

• Parallel field

• Radial field

• Concentric field

Figure 8: Types of magnetic fields (Taken from Battista (1999))

Figure 8 shows the different types of magnetic fields.

Figure 9: Magnetic spring (Taken from Battista (1999))

12

Figure 9 shows a drawing using unidirectional magnetic springs where
a parallel magnetic field acts on the springs. The magnetic model is able to
manage also directional springs (or even mixed models).

Figure 10: Magnetic spring drawing using a vertical magnetic field and unidirec-
tional magnetic springs (Taken from Battista (1999))

3.4 Simulated Annealing - Davidson and Harel (1996)

Like Kamada and Kawai, Davidson and Harel (1996) tried to reduce the
overall energy of a system. Instead of using a graph theoretic approach,
Davidson and Harell used the (VLSI) optimization technique called ”simu-
lated annealing”. The name of this technique comes from metallurgy and
describes the process of heating and controlled cooling of a material.

The idea behind simulated annealing is to begin with a randomly starting
position and a high temperature T. In each step, the temperature value
is decreased (cooling-function) and the current solution is replaced with
a random close-by solution. The probability the current solution changes
depends on the temperature T. This is the ”downhill” move. To avoid the
process to get stuck, ”uphill” moves are also allowed. The algorithm of
Davidson and Harrell searches for local minima of the energy function using

13

simulated annealing.
Even if the method of Davidson and Harel produces a good outcome in

terms of aesthetics, simulated annealing has a poor performance. Even if
the inner loop of the algorithm only has a time complexity of O(n), it is
very slow and unfeasible for interactive (force-directed) graph drawing.

Other graph drawing approaches using simulated annealing have been
proposed or mentioned by Cruz and Twarog (1996), Monien, Friedhelm, and
Salmen (1996), Mendonca (1994) and Coleman and Parker (1996).

Tunkelang (1993) uses the same cost function as Davidson and Harel,
but has an additional method for finding local minima.

3.5 Genetic Algorithms

Like simulated annealing, genetic algorithms are another common technique
for finding nearby optimum solutions. Instead of varying the temperature
(uphill, downhill) with simulated annealing, genetic algorithms use other
techniques like inheritance, mutation, natural selection and recombination.

Vose (1998) gives a good survey of this topic. The most popular works on
genetic algorithms for graph drawing have been proposed by Kosak, Marks,
and Shieber (1991) and Branke, Bucher, and Schmeck (1996). Further in-
formation on that topic is given by Branke (1996) and Rosete (1997).

Like for simulated annealing, genetic algorithms are computationally
intensive and thus are not suited for interactive graph drawing.

14

4 Improvements

4.1 Fruchterman and Reingold (1991)

Fruchterman and Reingold (1991) proposed a new force-directed placement
algorithm, which is based on the concept of Eades. Like Davidson and
Harel, it also uses the simulated annealing technique to get a better layout.
Their algorithm tries to distribute vertices evenly, achieve uniform edge
lengths and reflect symmetry. The main goals of the algorithm are speed
and simplicity.

Fruchterman and Reingold compare their model with a molecular
(atomic particles) or planetary simulation. They follow the approach of
Eades and apply only attractive forces to neighboring vertices, but repulsive
forces to all vertices.

The method defines attractive (fa) and repulsive (fr) forces as follows:

fa(d) =
d2

k

fr(d) = −k
2

d

where d is the distance between two vertices and k is the radius of the
empty area around a vertex. k is calculated as follows:

k = C

√
area

numberofvertices

The constant C is found experimentally.

Figure 11: Forces versus distance (Taken from Battista (1999))

15

Figure 11 shows the mentioned forces versus distance (and their sum).
As illustrated in the figure, k is the ideal distance where both attractive
and repulsive forces are equal and cancel each other out. Fruchterman and
Reingold tried several formulas to calculate attractive and repulsive forces.
The ones used by Eades show similar results, but were not so effective, since
fa required a higher amount of computational time.

fa and fr used by Eades:

fa(d) = kalogd

fr(d) =
k

d2

Their algorithm is similar to the one of Eades and requires the initial
configuration to be fully or partly specified. Each iteration has the following
main steps:

• Calculate the effect of attractive forces on each vertex

• Calculate the effect of repulsive forces on each vertex

• Limit the total displacement by the temperature

From a time complexity perspective, in each iteration the above algo-
rithm computes O(|E|) attractive and O(N2) repulsive forces. Fruchterman
and Reingold described a variant of their algorithm using grid boxes (”grid-
variant algorithm”). The basic idea behind is as follows. The screen is di-
vided into grid squares and in each iteration each vertex is placed in its grid
square and repulsive forces are only calculated between it and the vertices
in the nearby squares of the grid. This method leads to a time complexity
of O(N).

Like the algorithm of Eades, the one of Fruchterman and Reingold can
be applied to small graphs less than 40 vertices.

4.2 Frick et al. (1995)

Frick, Ludwig, and Mehldau (1995) proposed a new algorithm called GEM
(graph embedder). The algorithm adds several new ideas to the ones dis-
cussed above. These are

• the concept of a local temperature (instead of global temperature)

• attraction of vertices towards their barycenter

• detection of oscillations and rotations

Frick et al. are the first ones applying an adaptive cooling schedule for
force-directed placement techniques. They state

16

For each vertex, a local temperature is defined that depends
on its old temperature and the likelihood that the vertex oscillates
or is part of a rotating subgraph. Local temperatures raise if the
algorithm determines that vertex is probably not close to its final
destination.

The time complexity of the algorithm is O(N3). Their measurements
show that the Fruchterman and Reingold algorithm is 4 times slower.

Figure 12: Icosahedron drawn using the GEM algorithm (Taken from Battista
(1999))

17

5 Multi-level Algorithms

The mentioned algorithms above are suited for smaller graphs (1000 nodes
or less). Hadany and Harel (1999) introduced a new approach for dealing
with large graphs. Their method is called multi-scale, multi-level or multi-
dimensional.

The basic principle behind the algorithm is that it operates on several
”levels”. In a first step it operates on an abstract level and considers just
a rough layout of the graph (coarse-scale representation). Then in a next
step finer details of the graph are considered. However, the rough layout of
the graph must take essential properties and features for visualization into
account.

According to Tamassia (2007), the general structure is as follows.

• Perform fine-scale relocations of vertices that yield a locally organized
configuration

• Perform coarse-scale relocations (through local relocations in the
coarse representations), correcting global disorders not found in stage
1.

• Perform fine-scale relocations that correct local disorders introduced
by stage 2.

For step 2 (coarse-scale relocations) they use the energy function of
Kamada and Kawai (1989). For step 3 (fine-scale relocations) force-directed
calculations of Eades (1984), Fruchterman and Reingold (1991) or Kamada
and Kawai (1989) can be used.

In 2000, Harel and Koren (2001) proposed an improvement that was
able to handle graphs up to 15.000 vertices. The algorithm used a simpler
coarsening process and a faster fine-scale beautification.

Gajer, Goodrich, and Kobourov (2000, 2001) proposed a new approach
in the field of multi-level force-directed placement algorithms. Like Harel
and Koren they used a simpler coarsening and reduced the quadratic time
complexity of former force-directed algorithms. Besides a ”filtration” and
”neighborhood” technique, they didn’t rely on randomized initial placement,
but used an ”intelligent” method of initial placement based on graph theo-
retic distances.

Another multi-level approach introduced in 2003 was the one of Walshaw
(2001). Instead of using the algorithm of Kamada and Kawai, Walshaw
applied the improvement of Fruchterman and Reingold (1991).

18

6 Multi-dimensional Scaling using FDP

In this section we present the applications of Force-directed Placement to the
field of Multi-dimensional Projection, specifically, Multidimensional Scal-
ing. i.e. , we discuss the role of FDP techniques used in graph drawing in
the problem of visualizing high-dimensional datasets defined in Rm-space in
lower-dimensional space Rn where n� m and n ∈ {1, 2, 3}.

When force-directed placement, as introduced by Fruchterman and Rein-
gold (1991) (cf. 4.1), is applied to the general case of full graphs instead of
simple, connected partial graphs, complexity becomes an issue.

In multidimensional scaling we regard similarity relationships between
all high-dimensional data items. Hence, the layouting problem of the pro-
jected data based on their (dis)similarity essentially equals the problem of
calculating a layout for a fully connected graph. In fact, general MDS has a
strong connection to graph drawing. Performing MDS on a dataset is essen-
tially equivalent to performing Kamada and Kawai (1989)’s energy-based
graph layout on a complete graph whose vertices correspond to points in
the dataset and whose edges are weighted by the high-dimensional distance
between the corresponding points (Ingram et al., 2009b) (cf. 3.2).

In this case, a neighbourhood is comprised not only of a small subset,
but the whole dataset, force calculations become expensive. The complexity
of Fruchterman and Reingold (1991) becomes O(N3) with O(N2) per itera-
tion. Applying the algorithm to datasets with > 100 nodes is not practical,
particularly, with user interaction in mind.

FDP offers two alternatives where there is room for improving complex-
ity: one can reduce the number of iterations necessary to reach the final
layout, or reduce the complexity of each iteration.

An important aspect of iterative placement techniques is to decide when
to stop the approximation process. Most commonly, the evaluation of a lay-
out is performed using a metric based on the mechanical stress of the spring
system. This is formulated as the residual sum of all inter-item distances
with a normalization term:

Stress =

∑
i<j (δij − dij)

2∑
i<j (dij)

2

δij being the (dis)similarity measure in high-dimensional space and dij

being the Euclidian distance in the layout. The normalization tends to yield
more compact layouts (Chalmers, 1996).

In the following sections we present various approaches which tackle the
complexity problem.

19

6.1 Chalmers ’96: O(N2) [O(N)]

Chalmers (1996) is an example of reducing complexity of the inner iteration.
In their approach they reduce iteration time to linear complexity O(N). The
overall complexity becomes O(N2).

They presented a stochastically-based algorithm which uses data samples
to identify nodes connected by spring-forces. Their algorithm is easy to
implement, has low overhead, and produces good layouts.

6.2 Morrison et al. ’02: O(N
3
2) [O(N)]

Morrison, Ross, and Chalmers (2003) were the first to introduce a hybrid
approach to lower complexity. Their algorithm relies on stochastic sampling,
spring models, and interpolation of data items in low-dimensional space.

The algorithm works as follows:

1. A random set S of size
√
N data items is sampled

2. The sample is projected using Chalmers (1996)

3. Relative positions of missing items are interpolated

The interpolation process takes each missing data item and places it next
to its closest member of the projected random sample considering desired
distances. Then they refine the placement by applying the combined forces
of yet another random sample from the original subset S to the inserted
item (a constant number of times).

Compared to Chalmers (1996) their solution performs significantly faster
and produces layouts of superior quality.

6.3 Morrison et al. ’04: O(N
5
4) [O(N)]

In 2004 Morrison and Chalmers (2004) proposed a modification of their
original hybrid MDS approach presented in Morrison et al. (2003) which
improves overall complexity from O(N

3
2)) to O(N

5
4).

The new algorithm’s structure stays basically the same. However,
the original algorithm used computationally expensive nearest-neighbour
searches for parent finding during the interpolation stage (cf. 6.2). This
method is replaced by a novel approach to parent finding using randomly
selected pivots. We quote (Morrison & Chalmers, 2004)

”...the complexity of this phase has been reduced by treating
all high-dimensional relationships as a set of discretized distances
to a constant number of randomly selected pivot items.”

Their results document a significant performance improvement as well
as comparable layout quality.

A short summary of their algorithm (Morrison & Chalmers, 2004):

20

To form a layout of N multivariate objects :

1. Select
√
N subset of objects [O(

√
N)]

2. Create 2D layout of subset using Chalmers’ (Chalmers,
1996) linear per iteration spring model [O(N)]

3. Interpolate remaining objects onto the layout [O(N
√
N)]

• Find parent in sample for each remaining object
[O(N

√
N)]

• Use high-dimensional distances to a N
1
4 sample (of the

sample) to position remaining objects [O(N)]

4. Fine-tune layout with a constant number of iterations of
Chalmers’ spring model run on the full data set [O(N)]

6.4 Jourdan et al. ’04: O(N log n) [O(N)]

Jourdan and Melancon (2004) further refine the Pivot-based hybrid MDS
algorithm presented by Morrison and Chalmers (2004) resulting in an
even lower overall complexity of O(NlogN), as opposed to Morrison and
Chalmers (2004)’ O(N

√
N). The performance increase is significant (cf.

figure 13 while quality is maintained.
They achieve this by replacing the parent finding strategy introduced by

Morrison and Chalmers (2004) by searches based on sorted lists. Hence, the
parent finding task can be performed in O(logN) time.

The Jourdan and Melancon (2004) algorithm is considered the fastest
algorithm available.

Figure 13: Comparition of N
5
4 and N logN curves (from Jourdan and Melancon

(2004))

21

6.5 Ingram et al. ’09: O(N2) GPU-based, massively parallel

Ingram, Munzner, and Olano (2009a) proposed Glimmer, a so called mul-
tilevel MDS algorithm exploiting modern graphics processing units (GPU),
inspired by the hybrid MDS approaches by Chalmers (1996), Morrison and
Chalmers (2004) and Jourdan and Melancon (2004).

They designed a entirely GPU-based algorithm which breaks down the
input dataset into a hierarchy of multiple levels of subsets. At each level
three operations are performed, namely, restriction, relaxation and inter-
polation. These operations are performed by a GPU-based parallel imple-
mentation of a stochastic force MDS solver (based on the ideas of Chalmers
(1996)).

Figure 14: The Glimmer multilevel algorithm. The restriction operator builds the
hierarchy by sampling points. GPU-SF (GPU-Stochastic Forces) is used as the
relaxation operator at each level, with all points allowed to move, and as the in-
terpolation operator, with only new points allowed to move. Lower levels untwist
complex layouts while higher levels converge quickly because of computation at the
lower levels. (Taken from Ingram et al. (2009))

The algorithms is less prone to getting stuck in local minima due to its
multilevel hierarchical approach in contrast to the above discussed FDP-
based MDS variants (cf. also Paulovich et al. (2008) on the matter). Al-
though complexity is O(N2), the algorithm can compete with the fastest
methods available since GPU parallelism significantly improves performance.

22

7 Visual Comparison of Selected Graph Drawing
Techniques

7.1 Different Visualization of the Same Graph Drawn using
Different Algorithms

See the figures 15 and 16.

7.2 Comparative Data

See the figures 17 , 18 and 19.

23

Figure 15: Graphs Drawn by Different Drawing Algorithms (Taken from Branden-
burg, Himsolt, Rohrer)

24

Figure 16: Graphs Drawn by Different Drawing Algorithms with More Nodes (From
Brandenburg, Himsolt, Rohrer)

25

Figure 17: Comparing Graphs by Criteria (Chen Chaomei, Graph-Drawing Algo-
rithms)

Figure 18: Comparing Graphs to Each Other Regarding Performance; Less is Bet-
ter; (From Diplomarbeit by Michael Forster Universität Passau

26

Figure 19: Detailed Comparison of the Three Different Approaches (Spring, An-
nealing, Optimal Path; From Frick, Ludwig, Mehldau, Universitaet Karlsruhe)

27

8 References

Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. (1999). Graph drawing
algorithms for the visualization of graphs. Prentice Hall.

Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling
(Second ed.). Springer.

Brandenburg, F.-J., Himsholt, M., & Rohrer, C. (1995). An experimental
comparison of force-directed and randomized graph drawing algorithms.
Proceedings of the Symposium on Graph Drawing .

Brandes, U. (2001). Drawing graphs. In M. Kaufmann & D. Wagner
(Eds.), (pp. 71–86). London, UK: Springer-Verlag. Available from http://
portal.acm.org/citation.cfm?id=376944.376948

Branke, J. (1996). Drawing graphs using genetic algorithms. Manuscript .

Branke, J., Bucher, F., & Schmeck, H. (1996). Using genetic algorithms
for drawing undirected graphs. In The third nordic workshop on genetic
algorithms and their applications (pp. 193–206).

Chalmers, M. (1996, October). A linear iteration time layout algorithm for
visualising high-dimensional data. In Proc. visualization’96 (pp. 127–132).
San Francisco, California, USA. Available from http://www.dcs.gla.ac
.uk/~matthew/papers/vis96.pdf

Chen, C. (2006). Information visualization: Beyond the horizon. Springer,
Berlin; Auflage: 2nd ed. 2004. 2nd printing. (31. Mai 2006).

Coleman, M. K., & Parker, D. S. (1996, December). Aesthetics-based
graph layout for human consumption. Softw. Pract. Exper., 26 , 1415–
1438. Available from http://portal.acm.org/citation.cfm?id=246460
.246473

Cox, T., & Cox, M. (2001). Multidimensional scaling, second edition.
Chapman & Hall/CRC.

Crocker, N., McGuffin, R., & Naylor, R. (1972). Computer - aided place-
ment for high - density chip - interconnection system. In Electronics letters
(pp. 503–504).

Cruz, I. F., & Twarog, J. P. (1996). 3d graph drawing with simulated
annealing. In Proceedings of the symposium on graph drawing (pp. 162–
165). London, UK: Springer-Verlag. Available from http://portal.acm
.org/citation.cfm?id=647547.728601

28

http://portal.acm.org/citation.cfm?id=376944.376948
http://portal.acm.org/citation.cfm?id=376944.376948
http://www.dcs.gla.ac.uk/~matthew/papers/vis96.pdf
http://www.dcs.gla.ac.uk/~matthew/papers/vis96.pdf
http://portal.acm.org/citation.cfm?id=246460.246473
http://portal.acm.org/citation.cfm?id=246460.246473
http://portal.acm.org/citation.cfm?id=647547.728601
http://portal.acm.org/citation.cfm?id=647547.728601

Davidson, R., & Harel, D. (1996, October). Drawing graphs nicely using
simulated annealing. ACM Trans. Graph., 15 , 301–331. Available from
http://doi.acm.org/10.1145/234535.234538

Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium,
42 , 149–160. Available from http://www.cs.usyd.edu.au/~peter/old
spring paper.pdf

Eades, P., & Tamassia, R. (1988). Algorithms for drawing graphs: An
annotated bibliography (Tech. Rep.). Providence, RI, USA.

Fisk, C. J., Caskey, D. L., & West, L. E. (1967). Accel: Automated circuit
card etching layout. Proceedings of The IEEE , 55 , 1971–1982.

Forster, M. (1999). Zeichnen ungerichteter Graphen mit gegebenen
Knotengrössen durch ein Springembedder-Verfahren. Unpublished master’s
thesis, Universiät Passau, Germany. Available from http://www.michael
-forster.de/publications/dipl.pdf

Frick, A., Ludwig, A., & Mehldau, H. (1995). A fast adaptive lay-
out algorithm for undirected graphs. In Proceedings of the dimacs in-
ternational workshop on graph drawing (pp. 388–403). London, UK:
Springer-Verlag. Available from http://portal.acm.org/citation.cfm
?id=647546.730941

Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-
directed placement. Software - Practice and Experience, 21 , 1129–1164.

Gajer, P., Goodrich, M. T., & Kobourov, S. G. (2000). A fast multi-
dimensional algorithm for drawing large graphs. In In graph drawing’00
conference proceedings (pp. 211–221).

Gajer, P., Goodrich, M. T., & Kobourov, S. G. (2001). A multi-dimensional
approach to force-directed layouts of large graphs. In Proceedings of the
8th international symposium on graph drawing (pp. 211–221). London,
UK: Springer-Verlag. Available from http://portal.acm.org/citation
.cfm?id=647552.729396

Hadany, R., & Harel, D. (1999). A multi-scale algorithm for draw-
ing graphs nicely. In Proceedings of the 25th international workshop on
graph-theoretic concepts in computer science (pp. 262–277). London, UK:
Springer-Verlag. Available from http://portal.acm.org/citation.cfm
?id=647680.732318

Harel, D., & Koren, Y. (2001). A fast multi-scale method for drawing large
graphs. In Proceedings of the 8th international symposium on graph drawing
(pp. 183–196). London, UK: Springer-Verlag. Available from http://
portal.acm.org/citation.cfm?id=647552.729397

29

http://doi.acm.org/10.1145/234535.234538
http://www.cs.usyd.edu.au/~peter/old_spring_paper.pdf
http://www.cs.usyd.edu.au/~peter/old_spring_paper.pdf
http://www.michael-forster.de/publications/dipl.pdf
http://www.michael-forster.de/publications/dipl.pdf
http://portal.acm.org/citation.cfm?id=647546.730941
http://portal.acm.org/citation.cfm?id=647546.730941
http://portal.acm.org/citation.cfm?id=647552.729396
http://portal.acm.org/citation.cfm?id=647552.729396
http://portal.acm.org/citation.cfm?id=647680.732318
http://portal.acm.org/citation.cfm?id=647680.732318
http://portal.acm.org/citation.cfm?id=647552.729397
http://portal.acm.org/citation.cfm?id=647552.729397

Ingram, S., Munzner, T., & Olano, M. (2009a). Glimmer: Multilevel mds
on the gpu. IEEE Transactions on Visualization and Computer Graphics,
15 , 249–261.

Ingram, S., Munzner, T., & Olano, M. (2009b, March). Glimmer: Multi-
level MDS on the GPU. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 15 (2), 249–261.

Jourdan, F., & Melancon, G. (2004). Multiscale hybrid mds. In Proceedings
of the information visualisation, eighth international conference (pp. 388–
393). Washington, DC, USA: IEEE Computer Society. Available from
http://portal.acm.org/citation.cfm?id=1018435.1021647

Kamada, T., & Kawai, S. (1988). Automatic display of network structures
for human understanding. Information Processing Letters.

Kamada, T., & Kawai, S. (1989, April). An algorithm for drawing general
undirected graphs. Inf. Process. Lett., 31 , 7–15. Available from http://
dx.doi.org/10.1016/0020-0190(89)90102-6

Kobourov, S. G. (2007). Handbook of graph drawing and visualization (dis-
crete mathematics and its applications) (R. Tamassia, Ed.). Chapman &
Hall/CRC. Available from http://www.cs.brown.edu/~rt/gdhandbook/
chapters/force-directed.pdf

Kosak, C., Marks, J., & Shieber, S. M. (1991). A parallel genetic algorithm
for network-diagram layout. In Icga (p. 458-465).

Kruskal, J., & Wish, M. (1978). Multidimensional scaling. Sage Publica-
tions.

Mendonca, X. (1994). A system for drawing conceptual schema diagrams.
PhD Thesis.

Monien, B., Friedhelm, R., & Salmen, H. (1996). A parallel simulated
annealing algorithm for generating 3d layouts of undirected graphs. In
Proceedings of the symposium on graph drawing (pp. 396–408). London,
UK: Springer-Verlag. Available from http://portal.acm.org/citation
.cfm?id=647547.728590

Morrison, A., & Chalmers, M. (2004, May). A pivot-based routine for
improved parent-finding in hybrid mds. Information Visualization, 3 (2),
109–122.

Morrison, A., Ross, G., & Chalmers, M. (2003, March). Fast multidimen-
sional scaling through sampling, springs and interpolation. Information
Visualization, 2 (1), 68–77.

30

http://portal.acm.org/citation.cfm?id=1018435.1021647
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://www.cs.brown.edu/~rt/gdhandbook/chapters/force-directed.pdf
http://www.cs.brown.edu/~rt/gdhandbook/chapters/force-directed.pdf
http://portal.acm.org/citation.cfm?id=647547.728590
http://portal.acm.org/citation.cfm?id=647547.728590

Paulovich, F. V., Nonato, L. G., Minghim, R., & Levkowitz, H. (2008,
May). Least square projection: A fast high-precision multidimensional pro-
jection technique and its application to document mapping. IEEE Transac-
tions on Visualization and Computer Graphics, 14 (3), 564–575. Available
from http://www.lcad.icmc.usp.br/~nonato/pubs/lsp.pdf

Quinn, N., & Breur, M. (1979). A force directed component placement
procedure for printed circuit boards. In Ieee transactions on circuits and
systems (pp. 377–388).

Rosete, A. (1997). Drawing graphs using genetic algorithms. Manuscript .

Scanlon, F. T. (1971). Automated placement of multi-terminal compo-
nents. In Proceedings of the 8th design automation workshop (pp. 143–
154). New York, NY, USA: ACM. Available from http://doi.acm.org/
10.1145/800158.805068

Sugiyama, K., & Misue, K. (1995a). Graph drawing by magnetic spring
model. In Journal of visual languages and computing (pp. 217–231).

Sugiyama, K., & Misue, K. (1995b). A simple and unified method for
drawing graphs: Magnetic-spring algorithm. In Proceedings of the dimacs
international workshop on graph drawing (pp. 364–375). London, UK:
Springer-Verlag. Available from http://portal.acm.org/citation.cfm
?id=647546.730940

Tamassia, R. (2007). Handbook of graph drawing and visualization (discrete
mathematics and its applications). Chapman & Hall/CRC.

Tejada, E., Minghim, R., & Nonato, L. G. (2003, December). On improved
projection techniques to support visual exploration of multidimensional
data sets. Information Visualization, 2 , 218–231. Available from http://
portal.acm.org/citation.cfm?id=982444.982447

Tunkelang, D. (1993). A layout algorithm for undirected graphs. In Pro-
ceedings of graph drawing ’93.

Tutte, W. T. (1963). How to draw a graph. Proceedings of The London
Mathematical Society , s3-13 , 743–767.

Vose, M. D. (1998). The simple genetic algorithm: Foundations and theory.
Cambridge, MA, USA: MIT Press.

Walshaw, C. (2001). A multilevel algorithm for force-directed graph
drawing. In Proceedings of the 8th international symposium on graph
drawing (pp. 171–182). London, UK: Springer-Verlag. Available from
http://portal.acm.org/citation.cfm?id=647552.729414

31

http://www.lcad.icmc.usp.br/~nonato/pubs/lsp.pdf
http://doi.acm.org/10.1145/800158.805068
http://doi.acm.org/10.1145/800158.805068
http://portal.acm.org/citation.cfm?id=647546.730940
http://portal.acm.org/citation.cfm?id=647546.730940
http://portal.acm.org/citation.cfm?id=982444.982447
http://portal.acm.org/citation.cfm?id=982444.982447
http://portal.acm.org/citation.cfm?id=647552.729414

	Contents
	Introduction
	Force Directed Placement in Graph Drawing
	Multidimensional Scaling
	Graphical Taxonomy

	First Force-directed Graph Layout Algorithms
	The Barycentric Method
	VLSI Layout Algorithms

	Basic force-directed techniques
	Spring Forces - Eades (1984)
	Graph Theoretic Distance - Kamada and Kawai (1989)
	Magnetic Fields - Sugiyama and Misue (1995)
	Simulated Annealing - Davidson and Harel (1996)
	Genetic Algorithms

	Improvements
	Fruchterman and Reingold (1991)
	Frick et al. (1995)

	Multi-level Algorithms
	Multi-dimensional Scaling using FDP
	Chalmers '96: O(N2) [O(N)]
	Morrison et al. '02: O(N32) [O(N)]
	Morrison et al. '04: O(N54) [O(N)]
	Jourdan et al. '04: O(N logn) [O(N)]
	Ingram et al. '09: O(N2) GPU-based, massively parallel

	Visual Comparison of Selected Graph Drawing Techniques
	Different Visualization of the Same Graph Drawn using Different Algorithms
	Comparative Data

	References

