
Steerable Parallel Coordinates in JavaScript

Project Report

Philipp Drescher, Jeremias Kleinschuster, Sebastian Schreiner, Burim Vrella

706.057 Information Visualisation 3VU SS 2023
Graz University of Technology

16 Jun 2023

Abstract
Explorable explainers can be used to convey complex ideas in a more interactive way. The
aim of this project was to create an scrollytelling explorable explainer for parallel coordinates.
To be able to do so, a prototype steerable parallel coordinates implementation was built in
JavaScript, which can be steered and controlled from outside via exposed methods. The
project serves as a basis for future work expanding the functionality of the library.

© Copyright 2023 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

List of Tables v

List of Listings vii

1 An Explorable Explainer in JavaScript 1
1.1 Dataset . 1
1.2 Narrative . 2
1.3 ParCoords Library . 5
1.4 ScrollMagic . 5
1.5 Project Structure . 6

2 Investigating Pluto 9
2.1 Julia . 9
2.2 Setup and Execution . 9
2.3 Pluto Features. 10
2.4 Remarks. 10

3 Steerable Parallel Coordinates (SPC) 11
3.1 Project Structure . 11
3.2 Library Overview . 13
3.3 SPC Demonstrator . 15
3.4 Library Packaging . 19

4 Concluding Remarks 21
4.1 Shift of Focus . 21
4.2 Outlook . 21

Bibliography 23

i

ii

List of Figures

1.1 Explorable: Dataset . 3
1.2 Explorable: Intro . 3
1.3 Explorable: Rearrange . 4
1.4 Explorable: Example . 4

2.1 Julia Terminal . 10

3.1 SPC: Initial State . 16
3.2 SPC: Filtering . 16
3.3 SPC: Hovering . 17
3.4 SPC: Moving Dimensions . 17
3.5 SPC: Including or Excluding Dimensions 18
3.6 SPC: Inverting a Dimension . 18

iii

iv

List of Tables

1.1 Dataset . 2

v

vi

List of Listings

1.1 ScrollMagic Example. 6
1.2 Project Structure . 7

3.1 Project Structure . 12
3.2 TypeScript Config File . 12
3.3 webpack Config File . 13
3.4 Member Functions . 13

vii

viii

Chapter 1

An Explorable Explainer in JavaScript

Explorable explainers can aid in understanding complex topics, by guiding the user through an interactive
narrative. The goal of this project was to implement an explorable in JavaScript to explain the usage of
parallel coordinates. Scrollytelling was used to convey the narrative and steer the parallel coordinates
plot.

To be able to interact with the plot from the outside, the library needs to expose certain functionalities
like inverting, hiding, and reordering dimensions. These functions can then be used by the explorable
implementation to guide the user through the narrative. In addition to the narrative being able to steer
the visualisation using exposed functions, the user should also be able to interact with the plot directly.

1.1 Dataset
The explorable explainer should guide the user through a narrative to illustrate the usage of parallel
coordinates. The main dataset used to illustrate parallel coordinates consists of fictitious marks (from 0
to 100) for 30 students in 8 subjects. It is shown in Table 1.1. Each record (row) represents a student, and
each dimension (column) represents a subject. The dataset is carefully curated to contain some outliers
and some records with strong correlations between different subjects to make them more apparent in the
plot and therefore easier to see by the reader.

1

2 1 An Explorable Explainer in JavaScript

Name Maths English PE Art History IT Biology German

Adrian 95 24 82 49 58 85 21 24
Robert 78 32 98 55 56 81 46 29
Thomas 76 47 99 34 48 92 30 38
Amelia 92 98 60 45 82 85 78 92
Lydia 75 49 98 55 68 67 91 87
Mark 51 70 87 40 97 94 60 95
Brooke 27 35 84 45 23 50 15 22
Nicole 70 8 84 64 26 70 12 8
Oswin 96 14 62 35 56 98 5 12
Peter 98 10 71 41 55 66 38 29
Chloe 78 9 83 66 80 63 29 12
Renette 96 39 82 43 26 92 20 2
Sylvia 86 12 97 4 19 80 36 8
Dylan 92 47 91 56 47 81 60 51
Sasha 87 1 84 70 56 88 49 2
Emily 67 3 98 77 25 100 50 34
Evan 53 60 97 74 21 78 72 75
Finn 42 73 65 52 43 61 82 85
Gia 50 81 85 80 43 46 73 91
Grace 24 95 98 94 89 25 91 69
Harper 69 9 97 77 56 94 38 2
Hayden 2 72 74 53 40 40 66 64
Isabella 8 99 84 69 86 20 86 85
Zack 19 84 83 42 93 15 98 95
Victor 5 60 70 65 97 19 63 83
Monica 62 89 98 90 85 66 84 99
Jesse 63 39 93 84 30 71 86 19
Jordan 11 80 87 68 88 20 96 81
Kai 27 65 62 92 81 28 94 84
Kaitlyn 7 70 51 77 79 29 96 73

Table 1.1: Curated dataset of marks (from 0 to 100) for 30 students in 8 subjects, used to illustrate
parallel coordinates.

1.2 Narrative
The narrative itself starts with a brief introduction to the topic and then proceeds to illustrate why a
traditional table is not optimal to spot correlations in a dataset, as can be seen in Figure 1.1. The
narrative proceeds with an introduction to parallel coordinates, using just 2 of the 8 dimensions, as shown
in Figure 1.2. Scrolling further, the narrative then displays 4 of the 8 dimensions and explains how
correlations can only be spotted between neighbouring dimensions, so sometimes dimensions have to be
rearranged to place dimensions of interest next to one another. This is shown in Figure 1.3. It is often
easier to see correlations if one of the neighbouring dimensions is inverted. The final section of the
explorable is shown in Figure 1.4. The visualisation displays all 8 dimensions of the dataset and allows
the reader to explore the dataset in its entirety and experiment with parallel coordinates.

Narrative 3

Figure 1.1: The explorable explainer first shows the dataset in tabular form to illustrate that is is
difficult to see correlations.

Figure 1.2: Next, the explorable introduces parallel coordinates.

4 1 An Explorable Explainer in JavaScript

Figure 1.3: The explainer proceeds to explain how and why to rearrange dimensions in a parallel
coordinates plot.

Figure 1.4: Finally, the explorable allows the user to explore the full dataset with parallel coordinates.

ParCoords Library 5

1.3 ParCoords Library
For the explorable explainer, an already existing JavaScript library by Chang [2019] was used. Although
it uses the outdated v3 of D3 for drawing, the library offers all the required functionality to be used
in the context of an explorable explainer. Notably, the library provides features such as brushing,
dimension inversion, and reordering. These features were accessible through both exposed functions for
programmatic control and through direct user interaction.

Loading different datasets was relatively straightforward to implement. This was used to allow the
user to explore parallel coordinates by using different datasets in different contexts. In addition to
the interactive parallel coordinates plot, a table view was added to the explorable explainer. This
functionality was already provided by the library itself, meaning only little additional extra work was
needed to incorporate it into the explorable explainer. This integration provides users with an additional
layer of insight into the underlying data set.

1.4 ScrollMagic
Scrollytelling in the explorable explainer was implemented using the ScrollMagic JavaScript library
[Paepke 2023]. One of the key features offered by ScrollMagic is the ability to trigger specific functions
based on the user’s current scroll position. This enables an explorable explainer to invoke appropriate
actions or transitions based on the reader’s progress. By defining specific scroll triggers and associated
functions, different elements within the explorable explainer can be manipulated or animated.

Additionally, the ScrollMagic library offers the option to pin HTML elements. When an element is
pinned, it remains fixed at a certain position on the screen regardless of further scrolling. This functionality
is particularly useful in the context of an explorable explainer, as it allows the parallel coordinates plot to
stay in a specific location while the narrative continues to progress.

There is also the possibility to change the CSS class of given HTML elements using ScrollMagic
triggers. This offers the possibility to emphasise certain aspects of the explorable by incorporating, for
instance, animations or style changes based on triggers.

Using this library involves the creation of a controller to which different scenes can be added. A scene
includes a trigger element and some logic whioch is executed if the trigger is invoked. To demonstrate the
usage of ScrollMagic, consider the example shown in Listing 1.1. Here, the explorable explainer aimed
to showcase the inversion of the Maths dimension within the parcoords object.

6 1 An Explorable Explainer in JavaScript

1 var controller = new ScrollMagic.Controller();
2
3 new ScrollMagic.Scene({ triggerHook: 0, triggerElement: ’#card5’ })
4 .on(’leave’, function (event) {
5 flipMaths();
6 })
7 .addTo(controller);
8
9 function flipMaths() {

10 parcoords.animationTime(500);
11 parcoords.flip(["Maths"]);
12 parcoords.render().updateAxes();
13 }

Listing 1.1: Using ScrollMagic to invoke a function to invert the Maths dimension.

1.5 Project Structure
The structure of files and folders in the project was driven by three main factors: readability, single
responsibility, and maintainability. By dividing the code base into smaller, more focused files, the overall
readability of the project significantly improved. Listing 1.2 shows the structure of the project. Each file
contains clear and concise funtionality, making it easier for developers to understand and navigate the
code base.

The css/ folder holds all style sheets used in the explorable. The card.css file is responsible for the
different narrative entries. The column.css file specifies how a column is laid out, since the explorable is
built in the form of a two-column layout. Finally, the style.css file holds general styling like font and
colours.

The data/ folder holds various .csv files used as the data source for the parallel coordinates plot. The
img/ folder contains all images used in the explorable. Currently, there is only a placeholder image present
which is used in the initial view of the explorable. All files implementing some behaviour are located in
the scripts/ folder. Additionally, there is a lib/ folder for external libraries such as d3.js and the parallel
coordinates library.

The main.js file handles general functionality such as the initial loading of the data set. The file
parcoords_driver.js is responsible for creating the parallel coordinates object used in the explorable. The
two remaining files, namely scrollmagic_helper.js and scrollmagic_trigger.js, are mainly responsible
for interaction with the parallel coordinates object. All triggers are defined in scrollmagic_trigger.js.
These triggers use functions implemented in scrollmagic_helper.js, which directly accesses the parallel
coordinates object to manipulate the parallel coordinates plot. The main HTML source file is index.html.

Project Structure 7

1 Name | Type
2 ---
3 - css | Folder
4 - card.css | css source file
5 - column.css | css source file
6 - style.css | css source file
7 - data | folder
8 - cars.csv | data
9 - student-marks_v2.csv | data

10 - img | folder
11 - placeholder.png | image
12 - scripts | folder
13 - lib | folder
14 - main.js | javaScript source file
15 - paracoords_driver.js | javaScript source file
16 - scrollmagic_helper.js | javaScript source file
17 - scrollmagic_trigger.js | javaScript source file
18 - index.html | html source file

Listing 1.2: Project structure of the D3 standalone.

8 1 An Explorable Explainer in JavaScript

Chapter 2

Investigating Pluto

In addition to the ScrollMagic implementation, the possibility of utilising Pluto [fonsp 2023] for an
explorable explainer was investigated. Pluto is an interactive programming tool built on top of the Julia
programming language. It provides a user-friendly notebook interface which enables users to explore,
experiment, and document their code in an interactive environment. Notably, Pluto.jl was developed
alongside a free online course at MIT, making it exceptionally well-suited for interactive teaching and
learning experiences.

2.1 Julia
As explained by Bezanson et al. [2017], Julia is a versatile and dynamic programming language known
for its high-performance computing capabilities. It offers an easy-to-use syntax similar to Python,
combined with the computational efficiency of lower-level languages like C, while still being a dynamically
typed language. With Julia, users can perform complex numerical computations and data analysis with
remarkable speed and precision. In addition, the system makes it possible to recreate the same environment
on different systems. Julia was developed as an open-source project with currently over 1000 contributors
on GitHub [Bezanson et al. 2023].

2.2 Setup and Execution
To get started with Julia and Pluto, the following steps need to be taken:

1. Install Julia: Since Pluto is built upon Julia, Julia needs to be installed first. The most recent
version suitable for every system can be obtained from the Julia website (julialang.org). After
downloading, Julia just needs to be installed.

2. Run Julia: After installation, Julia can be run by either directly launching the Julia application or
by executing the command julia in the terminal, depending on the operating system. The Julia
terminal should open, where basic Julia code can be executed. An example of a Julia terminal can
be seen in Figure 2.1.

3. Install Pluto: In the Julia terminal, use the Julia package manager to install Pluto:

import Pkg; Pkg.add("Pluto")

4. Run Pluto: Once Pluto is installed successfully, it can be hosted by executing the following command.
This will enable access to Pluto through the browser via localhost:

import Pluto; Pluto.run()

9

https://julialang.org/

10 2 Investigating Pluto

Figure 2.1: Example terminal output after installation of Julia.

The command also automatically opens the correct address in the standard browser. Pluto can be
stopped again by pressing "Ctrl + C" in the Julia terminal.

2.3 Pluto Features
Pluto has many important and useful features for various use cases:

• Reactivity: Pluto introduces the concept of reactive cells, where changes in one cell can trigger
updates in other, dependent cells. This allows for a more dynamic and responsive programming
workflow, as modifications to code or data are immediately reflected in the notebook by updating
the results. To be more efficient, Pluto selectively re-evaluates only the affected cells when changes
occur.

• HTML Interaction: It is possible to use the @bindmacro to ensure a binding between Julia variables
and HTML objects. Combined with the reactivity of Pluto, this is a very useful tool to make
variables easily changeable. The Pluto package already provides simple inputs like sliders and
buttons. Further widgets can be added using HTML, CSS, and JavaScript.

• Reproducibility: Pluto automatically checks which packages are being used in a notebook and
keeps track of them by managing a package environment. This package environment is stored in
the notebook file to reproduce the exact environment when opening the file in Pluto again. The
notebook can be saved as either a notebook file (Julia file), a HTML file (which can be hosted), or a
static PDF file.

• Speed: Since it is highly efficient, Julia is perfectly suited to handling complex operations. Using
this language, Pluto achieves impressive speed and maintains seamless interactivity, while enabling
users to program in a script-like manner.

2.4 Remarks
Pluto is a notebook-style programming environment, it is perfectly suited to build an explorable explainer.
The result would be similar to an explorable built in Jupyter with Python. With an implementation in
Pluto, users could interactively explore parallel coordinates in a step-by-step approach. Additionally,
Pluto implementations have the advantage of being easily shared and reproduced.

However, unlike a JavaScript explorable with ScrollMagic, it would not be feasible to create a scrollable
explorable for parallel coordinates within a Pluto environment. An implementation of parallel coordinates
is available in the PlutoPlotly package, but it has some limitations and is not steerable.

Chapter 3

Steerable Parallel Coordinates (SPC)

The parallel coordinates library used to build the prototype explorable described in Chapter 1 was built
several years ago with the now outdated version v3 of the D3 library. To proceed with the project, it was
decided to concentrate efforts on developing a new steerable parallel coordinates (SPC) library with the
latest version v7 of D3. This could then be used in a future implementation of a parallel coordinates
explorable explainer.

3.1 Project Structure
The files of the new SPC library implementation are divided among two main folders, lib/ and src/, as
shown in Listing 3.1. The src/ folder contains the folder scripts/ where the parallelcoordinates.ts
TypeScript TypeScript [2023] source file is located. The SPC library is implemented in the file parallel
coordinates.js, which is generated by compiling the TypeScript source file.

The lib folder structure has two sub-folders example/ and plugins/ and contains the parallelcoordinate
s.js library. The example/ folder contains all necessary files for a small showcase including an HTML file,
a stylesheet, a dataset, and some driver code. All third-party libraries are downloaded and stored locally
in the plugins/ folder. These libraries include the current version of D3 D3 Library [2023] which is used
to draw the parallel coordinates plot. The other two libraries, popper.min.js and tippy-bundle.umd.js,
are used to display the tooltips.

The two remaining files, tsconfig.json and webpack.config.js, are responsible for specifying how the
library should be built. The file tsconfig.json, shown in Listing 3.2, controls how the SPC TypeScript
source code is transpiled into JavaScript. It is divided into three sections: compilerOptions, include,
and exclude. In the first section, compilerOptions, the compiler is given various parameters to take
into account during compilation. These include the output directory and the target JavaScript JavaScript
[2023] version. This project uses version es2022 ES2022 [2023] for compilation, which is currently the
most recent available version.

The file webpack.config.js, shown in Listing 3.3, controls the bundling of external libraries. Libraries
marked as externals are expected to be imported by the user. Therefore these libraries will not be bundled
and shipped together with the SPC library. In the example implementation discussed in Section 3.3 these
libraries are included in the header of the index.html file.

11

12 3 Steerable Parallel Coordinates (SPC)

1 Name | Type
2 ---
3 - lib | Folder
4 - example | Folder
5 - data | Folder
6 - student-marks-v2.csv| Data
7 - index.html | HTML source file
8 - main.js | JavaScript source file
9 - style.css | CSS source file

10 - plugins | Folder
11 - d3.v7.js | JavaScript source file
12 - popper.min.js | JavaScript source file
13 - tippy-bundle.umd.js | JavaScript source file
14 - parallelcoordinates.js | JavaScript source file
15 - src | Folder
16 - scripts | Folder
17 - parallelcoordinates.ts| TypeScript source file
18 tsconfig.json | TypeScript config file
19 webpack.config.js | Webpack config file

Listing 3.1: Project structure of the SPC library.

1 {
2 "compilerOptions": {
3 "module": "commonjs",
4 "target": "es2022",
5 "sourceMap": false,
6 "outDir": "lib",
7 "pretty": true,
8 "downlevelIteration" : true
9 },

10 "include": [
11 "src/**/*"
12],
13 "exclude": [
14 "node_modules"
15]
16 }

Listing 3.2: The tsconfig file used to configure TypeScript.

Library Overview 13

1 module.exports = {
2 externals: {
3 d3: ’d3’,
4 tippy: ’tippy’
5 },
6 };

Listing 3.3: The Webpack config used to specify the bundling of external libraries.

1 Member functions
2 -----------------------------------
3 - loadCSV(csv)
4 - getData()
5 - setFeatures(newFeatures)
6 - invert(dimension)
7 - getInversionStatus(dimension)
8 - move(dimension , toRightOf , A)
9 - getDimensionPositions()

10 - getFilter(dimension)
11 - setFilter(dimension)
12 - getSelected()
13 - select(records)
14 - saveAsSVG()
15 - generateSVG()

Listing 3.4: Member functions of the SPC class, which are callable from outside.

3.2 Library Overview
The main characteristic of a steerable parallel coordinates library is that it has exposed methods which
can be used to control and steer the plot from outside. The methods are shown in Listing 3.4. However,
only five of them are currently implemented:

• loadCSV(csv): (implemented)
The loadCSVmember function expects a CSV file as plain text. The text then gets parsed and stored
as an array, which then serves as the data from which the parallel coordinates plot will be generated.

• getData(): (implemented)
The main purpose of this function is, to have a simple way of retrieving the already parsed data.
Therefore getData() serves as a getter function to retrieve the data member variable from the
parallel coordinates object.

• setDimensions(newDimensions): (implemented)
With the setDimensions function the user can tell the parallel coordinate object which dimensions
should be visible and which not. This is done via the parameter newDimensions which is an array
that includes all the dimension names that the user wants to be able to see. In the example, this
functionality is illustrated by enabling the user to select and deselect the dimensions by utilising

14 3 Steerable Parallel Coordinates (SPC)

checkboxes.

• invert(dimension): (implemented)
The invert function expects the name of the dimensions which should be inverted as a string. The
dimension names correspond to the column names of the CSV file.

• generateSVG(): (implemented)
This function serves as the core for drawing the plot. It generates the different dimensions including
the ticks and the titles. It also generates a line for each row in the data set. Another main
responsibility is to bind all event handlers used to interact with the plot. These include onDrag
handlers for rearranging columns, onClick handlers for inverting them, as well as onClick and
onDrag handlers to implement the brushing functionality. The mouseover callback is bound per
data entry and is used to highlight the corresponding lines in another colour. Additionally, the data
entry’s name is displayed as a tooltip at the cursor’s locations.

• getInversionStatus(dimension): (not implemented)
This function can be used as a way to retrieve the current status of a dimension which could either
be inverted or non-inverted. The dimensions name should be provided as a string.

• move(dimension, toRightOf, A): (not implemented)
The purpose of this function is to reposition a dimension in a parallel coordinates plot. The target
dimension is specified using the A parameter, and the toRightOf parameter determines whether the
dimension should be positioned to the left or right of it.

• getDimensionPositions(): (not implemented)
This function should return a list of the dimensions in the plot ordered corresponding to the current
layout.

• getFilter(dimension): (not implemented)
The getFilter function returns the current filtering as an interval with normalised values from zero
to one. This has to be done because the dimensions range can vary depending on the input data. If
no filtering is enabled, some default value should be returned to indicate this. This default value
could be for instance -1 as this is not feasible as an interval.

• setFilter(dimension, from, to): (not implemented)
The function sets a filter for a dimension specified by the first parameter. The from and to parameters
specify an interval that also uses normalised coordinates from zero to one. This enables the usage
of filtering without actually knowing the dimensions scale, which depends on the data.

• getSelected(): (not implemented)
With this function, all currently selected paths and their information can be retrieved. This function
returns a map with the id of the path and the information of the record it belongs to.

• select(records): (not implemented)
The select function expects a list of records as a parameter. The provided records should then
be highlighted in another colour. Additionally, three states should be implemented to reflect this
behaviour. These are namely neutral, hovered, and selected. Neutral is the default state meaning
that the records are coloured in the default colour. If the user hovers over one or multiple records,
the state should change to hovered to reflect this. Additionally, a tooltip could be shown and the
hovered records could be coloured differently. The selected can be used to create a list of curated
records.

SPC Demonstrator 15

• saveAsSVG(): (not implemented)
To be able to download the state of the parallel coordinates plot a function is needed to convert
the drawn elements to an SVG file. To be able to do so, some kind of SVG printer needs to be
implemented.

3.3 SPC Demonstrator
The current status of the SPC library is that it is capable of creating fully functional parallel coordinates
plots. The user can analyse a dataset by moving, inverting, and filtering dimensions. The user can hover
over a polyline to see information about the corresponding record. The user can also remove dimensions
from the current plot and re-include them again. However, only five of the steerable methods have
currently been implemented.

In order to show the usage of the SPC library, an example demonstrator application was built. It can
be found in the folder lib/example/. Figure 3.1 shows the initial state of the demonstrator after uploading
a dataset. A dataset can be uploaded using the Upload file button, which opens a file browser to select a
CSV file from the local file system. The filtering functionality of SPC is illustrated in Figure 3.2. In this
example, the lower scoring students in Maths have been filtered out. The user has full control over the
filter range, meaning that the interval can be moved up and down on the dimensions, cleared, and shrunk
and enlarged.

The highlighting of individual records by hovering is shown in Figure 3.3. In addition to the hovered
record in red, a tooltip is displayed with more information. In this case, the tooltip shows the hovered
student’s name, making it easier for the user to find specific entries. Dimensions can be re-ordered by
dragging and dropping a dimension, as shown in Figure 3.4.

The displayed dimensions can be determined by selecting or deselecting the checkboxes at the bottom
of the page. Each checkbox corresponds to one dimension in the dataset. The checkboxes are dynamically
generated after the dataset is uploaded. Figure 3.5 shows the parallel coordinates plot with the English and
IT dimensions deselected. As illustrated in Figure 3.6, it is possible to invert dimensions interactively by
clicking on the triangle above each dimension axis. It is also possible to invert a dimension by calling the
invert(dimension) function of the SPC instance. The buttons at the bottom of the demonstrator page
trigger the function for the corresponding dimension.

16 3 Steerable Parallel Coordinates (SPC)

Figure 3.1: After uploading a dataset, a parallel coordinates plot is created displaying all available
dimensions.

Figure 3.2: A filter can be applied to any dimension.

SPC Demonstrator 17

Figure 3.3: When hovering over a path the user can see the information of the current path.

Figure 3.4: By clicking on a dimensions name and holding, one can move the dimensions to the
desired place in the coordinate system.

18 3 Steerable Parallel Coordinates (SPC)

Figure 3.5: By selecting or deselecting the checkbox with the dimension’s name, that dimension will
be included in or excluded from the plot.

Figure 3.6: By clicking the triangle above a dimension’s axis, the user can invert the dimension.

Library Packaging 19

3.4 Library Packaging
There are several different ways to package JavaScript modules, each with their own advantages and
disadvantages:

• IIFE (Immediately Invoked Function Expression): An IIFE is a JavaScript function that is executed
immediately after it is defined. It is typically used to create a separate scope for variables and
functions to avoid polluting the global namespace. By wrapping code in an IIFE, it is possible to
ensure that variables and functions defined within it do not conflict with those in the outer scope. An
important characteristic of IIFE modules is that they are compatible with older browsers that may
not support the latest JavaScript features or modules. Since IIFEs are a well-established pattern, they
can be used in environments where modern module systems are not available or not well-supported.

• CJS (CommonJS): CommonJS is a module system for JavaScript that was primarily designed for
server-side environments, such as Node.js. It allows developers to organise their code into reusable
modules using a require() function to import modules and module.exports or exports to export
values from a module. CommonJS modules are synchronous, meaning that they are loaded and
executed synchronously in the order specified.

• AMD (Asynchronous Module Definition): AMD is a module system primarily used in client-side
JavaScript applications. Unlike CommonJS, which loads modules synchronously, AMD loads
modules asynchronously, which can improve performance in browser environments. AMD modules
are defined using the define(function and can specify dependencies using an array notation.
They are typically loaded on demand, allowing for better control over the loading and execution of
modules.

• UMD (Universal Module Definition): UMD is a module pattern that aims to provide compatibility
between different module systems, including CommonJS, AMD, and globals (e.g., when using script
elements on a web page). UMD modules use a combination of techniques to determine the available
module system at runtime and adapt accordingly. While UMD allows modules to be used in different
environments, it can be much more complex to write, because it needs to handle multiple scenarios.

• ESM (ECMAScript Modules): ESM is the most recent official standard for JavaScript modules. It
is built into the JavaScript language itself and provides a native module system. ESM provides the
import and export keywords to define dependencies and exports between modules. This module
system is widely supported in modern browsers and is commonly used in projects that leverage the
latest JavaScript features. It is also commonly used in TypeScript applications, since TypeScript
extends the functionality provided by ESM.

For a more thorough explanation Dixin’s Blog has a wonderful overview of the different modules.
Dixin’s Blog [2023]

20 3 Steerable Parallel Coordinates (SPC)

Chapter 4

Concluding Remarks

This project resulted in a proof-of-concept implementation for an explorable explainer for parallel coor-
dinates using a scrollytelling approach. In addition, the base for a steerable parallel coordinates library
was laid out in the form of a base class with some implemented methods, as described in Section 3.2.
This class was built on the most recent version v7 of D3, and utilises the latest version of TypeScript to
make it as future-proof as possible.

4.1 Shift of Focus
The primary issue that occurred during the project was the shift in focus from building an explainer to
building a steerable parallel coordinates library. Initially, the objective was to implement a scrollable
explorable explainer for parallel coordinates, utilising the fully functioning ScrollMagic implementation.
However, this approach proved unsatisfactory due to the requirement of using the most recent technology.
The first implementation relied on an older parallel coordinates library based on an old version of D3,
which lead to a change in direction.

The aim of the project shifted towards developing a steerable parallel coordinates library with the
most up-to-date version of D3. In addition to updating the library to use the most recent D3 version, it
was crucial to structure the implementation’s functionality into various small class methods to support
steerability. The code was refactored with the idea of allowing users to instantiate a class object and
utilise its methods to steer the plot from the outside. This was rather challenging, as the contexts, data,
and events needed to work effectively within smaller structures, without interference between methods.
Moreover, the new library was written in TypeScript for improved development processes and packaging
capabilities.

Overall, there was a recurring need for code base refactoring and alterations, taking substantial time
and resources within the project. Consequently, the resulting library remains unfinished to some extent.
Nevertheless, it can serve as a starting point for future projects.

4.2 Outlook
The future plans for this project include implementing the remaining functions that are not yet implemented
in the SPC library, as explained in Section 3.2. This is crucial in order to achieve a fully steerable parallel
coordinates plot and make it usable in a proper explorable explainer.

Once this is done, the next step should presumably be to implement a proper SVG export by adding a
secondary functionality to each of the functions that, instead of drawing the parallel coordinate system
on screen, writes the svg code in a proper and legible manner to an SVG file.

To further improve usability and compatibility for users of the SPC library, various packaging methods

21

22 4 Concluding Remarks

could be explored and used to ship the library. Currently, the library is exported as commonJs, but many
alternatives are available resulting in less overhead.

After this, it would be possible and desirable to implement a proper explorable explainer for parallel
coordinates. While this is not anymore strictly in the scope of this project, it was nevertheless the starting
point of this project and the steerable parallel coordinate library is tailor-made for such an endeavour.
In this case, the proof of concept implementation described in Chapter 1 could serve as a great starting
point.

Lastly, in order to use the SPC library in other projects with larger datasets, there are a number of
improvements that could be made for the library, including bundling and drawing the parallel coordinates
plot with WebGPU or WebGL for better performance.

Bibliography

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah [2017]. Julia: A Fresh Approach to
Numerical Computing. SIAM Review 59.1 (2017), pages 65–98. doi:10.1137/141000671. https://doi.o
rg/10.1137/141000671 (cited on page 9).

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah [2023]. julia. https://github.com/Ju
liaLang/julia (cited on page 9).

Chang, Kai [2019]. parallel-coordinates. 22 Oct 2019. https://github.com/syntagmatic/parallel-coord
inates (cited on page 5).

D3 Library [2023]. https://d3js.org/ (cited on page 11).

Dixin’s Blog [2023]. https://weblogs.asp.net/dixin/understanding-all-javascript-module-formats-an
d-tools (cited on page 19).

ES2022 [2023]. https://typescriptlang.org/docs/handbook/release-notes/typescript-4-5.html (cited
on page 11).

fonsp [2023]. Pluto. https://github.com/fonsp/Pluto.jl (cited on page 9).

JavaScript [2023]. https://javascript.com/ (cited on page 11).

Paepke, Jan [2023]. ScrollMagic. https://scrollmagic.io/ (cited on page 5).

TypeScript [2023]. https://typescriptlang.org/ (cited on page 11).

23

http://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://github.com/JuliaLang/julia
https://github.com/JuliaLang/julia
https://github.com/syntagmatic/parallel-coordinates
https://github.com/syntagmatic/parallel-coordinates
https://d3js.org/
https://weblogs.asp.net/dixin/understanding-all-javascript-module-formats-and-tools
https://weblogs.asp.net/dixin/understanding-all-javascript-module-formats-and-tools
https://typescriptlang.org/docs/handbook/release-notes/typescript-4-5.html
https://github.com/fonsp/Pluto.jl
https://javascript.com/
https://scrollmagic.io/
https://typescriptlang.org/

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 An Explorable Explainer in JavaScript
	1.1 Dataset
	1.2 Narrative
	1.3 ParCoords Library
	1.4 ScrollMagic
	1.5 Project Structure

	2 Investigating Pluto
	2.1 Julia
	2.2 Setup and Execution
	2.3 Pluto Features
	2.4 Remarks

	3 Steerable Parallel Coordinates (SPC)
	3.1 Project Structure
	3.2 Library Overview
	3.3 SPC Demonstrator
	3.4 Library Packaging

	4 Concluding Remarks
	4.1 Shift of Focus
	4.2 Outlook

	Bibliography

