Information Visualisation - Project Group 2:
Responsive Charts: Using and Extending RespVis

Valentin Adler, Ledio Jahaj, Markus Petritz, and Pooja Yeli

706.057 Information Visualisation SS 2021
Graz University of Technology

07 Jul 2021

Abstract

Data visualisations are usually static - they have a fixed layout and size. Making them
responsive can help greatly with supporting various devices, and it can also improve the
user experience. RespVis is a framework that aims to do that - provide responsive data
visualisations. Our aim with this project was to extend RespVis with new types of data
visualisations. In this paper we will first give an introduction to RespVis itself and then talk
about our work.

© Copyright 2021by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents
List of Figures
List of Listings

1 Introduction
1.1 Layouting .
1.2 Code Example
1.3 Visualisation Types.

2 RespVis Extension
2.1 Line Chart .
2.2 Multi-Line Chart.
2.3 Connected Scatterplot .
2.4 Small Multiples
24.1 Line and Bar Chart
24.1.1 LineChart
2412 BarChart e
24.2 Scatterplot Matrix .

3 Future Work
3.1 Line Chart .
3.2 Multi-Line Chart.
3.3 Connected Scatterplot .
3.4 Small Multiples .

4 Concluding Remarks

Bibliography

iii

N = =

o N W W

10
10
10
10
11

13
13
13
13
13

15

17

ii

List of Figures

2.1
2.2
23
24
2.5
2.6

Line Chart Implemented with RespVis
Multi-Line Chart Implemented with RespVis .
Connected Scatterplot Implemented with RespVis

Small Multiples Line Charts Implemented with RespVis .

Small Multiples Bar Charts Implemented with RespVis
Scatterplot Matrix Implemented with RespVis .

ii

11
11
12

v

List of Listings

1.1 RespVis Example Code .

2.1 RespVis Bézier Curve Implementation
2.2 RespVis Line SVG.

vi

Chapter 1

Introduction

The RespVis framework [Oberrauner 2021] was originally created by Peter Oberrauner. It is written in
TypeScript and provides responsive data visualisations rendered as SVG. The layout of the visualisations
is handled by a custom layouting system.

The framework works as an extension of D3 [Bostock 2021]. Each visualisation is implemen-
ted as a function that renders SVG components with D3. As such it supports existing D3 features,
such as different scale types or forms of interaction. The RespVis source code can be found at git-
hub.com/AlmostBearded/respvis.

1.1 Layouting

The basic functionality of the layouting system is that the SVG structure (legend, x axis, y axis, chart
itself) is recreated with hidden div elements. Elements requiring CSS rules for responsive behaviour
essentially copy these over to their div counterparts. The browser calculates a layout for the mirrored div
structure, after which RespVis can transfer the same layout back to the SVG structure.

This makes it possible to support a variety of responsive browser features with plain CSS. In particular,
it supports CSS flexbox [Coyier 2021] and grid [House 2021] layouts. However, it only really works with
inline CSS. There is no support for more complex CSS selectors, which could make some responsive
behaviour easier to implement.

The framework tries to fit the chart into the given container. Making a visualisation the makes the
container grow in size is not easy. This requires a workaround that might cause issues in some cases. For
example, it is possible to use the grid display to have the browser arrange child elements in such a manner
that they exceed the boundaries of their container. With having visible overflow, the chart elements can
be viewed then. The only issue is that the actual container is not resized, making it necessary to give
the chart container a bottom margin equal to the excess height. While this may not be a pretty solution,
it does the job for this purpose. This workaround especially comes into play for our implementation of
small multiples.

1.2 Code Example

An example of how to render charts with RespVis can be seen in Listing 1.1. It shows the HTML code
for our scatterplot matrix example. The chart is rendered inside a div element with a certain width and
height. With JavaScript the user would first have to transform the dataset with the appropriate function
(depending on the chart type). Then div for the layouter has to be inserted into the chart container, where
it is then initialized. The chart is inserted as a SVG into the layouter. The data is then assigned with d3’s
datum function, and then the chart is initialized by calling the appropriate RespVis library function. To
ensure responsive behavior on window resize, the data is reassigned on every change. Depending on the
chart type different things will happen whenever the data changes.

https://github.com/AlmostBearded/respvis
https://github.com/AlmostBearded/respvis

O 00 N O W AW =

LW W WM N NN — — — o om e e e
WY = O 0 00 3NNk WD = O 0o IO Nk W —= O

34
35
36
37
38
39
40
41
42

2 1 Introduction

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>RespVis - Scatterplot Matrix</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta charset="UTF-8" />
<style>
body {
background-color: floralwhite;

}

#chart {
width: 100%;
height: 80vh;
min-height: 25rem;
}
</style>
</head>
<body>
<hl>Scatterplot Matrix</hl>
<div id="chart">
</div>
<script src="./vendor/d3.v6.js"></script>
<script src="../respvis.js"></script>
<script type="module">
import data from ’'./data/scatterplot-matrix.js’;
const root = d3.select(’#chart’);
const layouter = root.append(’div’).call(respVis.layouter);
const chartDatum = respVis.dataChartPointMatrix ({
datasets: data.datasets,
radius: 2
1D)
const chart = layouter.append(’svg’).datum(chartDatum).call(respVis.
scatterMatrix)
window.addEventListener (’resize’, configure);
configure();

function configure() {
chart.datum(chartDatum) ;
}
</script>
</body>
</html>

Listing 1.1: Example HTML code for the scatterplot matrix.

1.3 Visualisation Types

Prior to our involvement with the framework, it supported scatter plot and bar chart (regular, stacked and
grouped) visualisations. Examples of the existing visualisations can be seen at respvis.netlify.app.

We have implemented six further visualisation types, which are partially based on the existing types:

¢ Line Chart
e Multi-Line Chart

* Connected Scatterplot

https://respvis.netlify.app/

Visualisation Types

* Small Multiples Line Chart
* Small Multiples Bar Chart

* Scatterplot Matrix

These new visualisations will be described in the following chapter.

1 Introduction

Chapter 2

RespVis Extension

In this chapter we will describe our implementations and show examples.

2.1 Line Chart

The line chart implementation uses the same point placement as the scatterplot. To make it a line chart,
the line has to be added. Therefore a path is added in the SVG starting at the point with the lowest x-value
up to the point with the highest x-value - meaning the point which is the farthest on the right. This path
can be configured with a colour and a thickness.

Optionally, the line can also be smoothed with a Bézier curve. Listing 2.1 shows how the Bézier
command is called with the calculated control points. The code was adapted from Romain [2021] to fit
into the RespVis project and our implementation. For comparison, Listing 2.2 shows the code to draw
simple straight line segments. With all that being plain SVG, it is ultra-sharp in the browser because of
the vector nature and thus can also be scaled up indefinitely. The smoothing operation can be configured
by the user to apply or not, there are certain datasets where this would not make sense and a straight line
is more intuitive.

Figure 2.1 shows a simple line chart of call-outs of the Graz Fire Department from 1999 to 2015.
The x-axis shows the year and the y-axis the number of call-outs. The dataset is from the City of
Graz [Graz 2020] and is freely available under the Creative Commons License. On the right side, one
can see how the line chart responds to a smaller width, it converts into a sparkline. The x and y-axis
vanish completely, only the first and last values are displayed to the give the user a understanding of
the dimensions. The rest is minimal on purpose and may not be suitable for every dataset. However,
this is certainly a risk take for the more elegant mobile visualization. Conversion to a sparkline is not
implemented as a feature for line charts in RespVis. Instead, it was implemented in the line chart example
with regular JavaScript, where we simply manipulate the SVG nodes when the viewport matches a certain
width. The responsive behavior and especially the conversion to a sparkline can be observed in the video
at https://youtu.be/SNbEC2gK11s.

https://youtu.be/SNbEC2gK1ls

O 00 N O kAW

—
o

12
13

15
16
17
18
19
20
21
22
23
24
25
26

6 2 RespVis Extension

function bezierTangent (a: DataPoint, b: DataPoint) : { length: number, angle:
number } {
const diffX = b.x - a.x;
const diffY b.y - a.y;
return {
length: Math.sqrt(Math.pow(diffX, 2) + Math.pow(diffY,2)),
angle: Math.atan2(diffY, diffX)

}
}
function bezierControlPoint (current: DataPoint, previous: DataPoint|undefined,
DataPoint |undefined, reverse?: Boolean) : {x:number, y:number} {
const p = previous || current;
const n = next || current;
const tangent = bezierTangent(p, n);

const smoothing = 0.15;

const angle = tangent.angle + (reverse ? Math.PI : 0);
const length = tangent.length * smoothing;

const x = current.x + Math.cos(angle) * length;

const y = current.y + Math.sin(Cangle) * length;

return {x, y};

}

function bezierCommand (point: DataPoint, i: number, a: DataPoint[]): string {
const cps = bezierControlPoint(a[i - 1], a[i - 2], point);
const cpe = bezierControlPoint(point, af[i - 1], af[i + 1], true);

return ‘C ${cps.x},${cps.y} ${cpe.x},${cpe.y} ${point.x},${point.y}";

next

Listing 2.1: Typescript implementation of the Bézier curve adapted from Romain 2021.

function lineCommand (point: DataPoint) {
return ‘L ${point.x},${point.y}"‘;
}

Listing 2.2: Command for drawing a line in svg.

Multi-Line Chart 7

Line Chart Line Chart

~—_
—

5500

5 5,000
4468
s 6\/
2000 2002 2008 200 2008 200 2002 20
Year

ze1n ur suny juewiieda 211
\
S

(a) Line chart in a wide window. (b) Line chart in a narrow
window.

Figure 2.1: An example of a line chart implemented with the RespVis library.

Multiline Chart Multiline Chart

al O et [doa3 N dated

SIXY $501D
SIXY $S01)

4 N %

20 75 30 35 0 45
Main Axis

35
Main Axis
el B et [dem3 N dued

(a) Multi-line chart in a wide window. (b) Multi-line chart in a

narrow window.

Figure 2.2: An example of a multi-line chart implemented with the RespVis library.

2.2 Multi-Line Chart

The multi-line chart is similar to the line chart, but displays more than one line. The dataset therefore
should have its data points in the same range to avoid any large empty areas. Currently, the user cannot
customise the lines in this visualisation, the colours and thickness are hardcoded. The colours are chosen
from a set of distinct categorical colours, which should make it easier to distinguish between them.
It would however be fairly simple to make it possible for users to customise individual colours. The
sparkline reduction is also not implemented. The multi-line chart example is also shown in the video at
https://youtu.be/y8B8KB6a7qc.

https://youtu.be/y8B8KB6a7qc

8 2 RespVis Extension

2.3 Connected Scatterplot

The connected scatterplot implementation is based on the existing regular scatterplot in RespVis and
our implementation of a line chart. All points are connected by a path in the order they appear in the
dataset. This require the user to order the dataset apppropriately, so that the line is correctly rendered.
Additionally, each point is labelled with the data from a third dimension of the dataset, where the first
and the second dimensions are the x and y-axis.

In the example in Figure 2.3, the dimensions are:

* Cost per gallon
* Miles per person per year

e Year

This dataset is based on an example from Mike Bostock [Bostock 2018]. Cost per gallon is rendered in
the y-axis, miles per person per year is rendered in the x-axis, and year is rendered in the labels of the
points. Figure 2.3a is fully zoomed out, whereas Figure 2.3b has been zoomed in somewhat.

The line is a smooth cubic Bézier curve, which is currently hardcoded. However, with minor code
changes, it could easily be changed to a regular straight line, and the same goes for the line colour or
width.

The following responsive patterns can be observed with the connected scatterplot:

* Removing Axis Ticks: axis ticks disappear when the chart container becomes narrower.

¢ Interactive Zoom: the user can zoom into the chart and move around.

The user can also hover the mouse pointer above one of the points to highlight it. On a mobile device,
the user can simply touch a point to get it highlighted. The connected scatterplot is demonstrated in the
video available at https://youtu.be/wKbzVi354As.

https://youtu.be/wKbzVW354As

Connected Scatterplot

Connected Scatterplot

3.4
3.2
3.0
258+
25
24

224

uoyres 1ad }so0)

20

4,000

Connected Scatterplot

uojes 1ad js0)

5.0‘00 5.60" 7.(;0" 8. U‘Ul) 8. V‘DO WU.‘DDQ
Miles per person per year

(a) Connected scatterplot in full size.

1975

1965 1966

1967

1968

3,400 3.600

4,000 4200 4,400 4,600 4,800 5,000 5200 5400 5.600 5,800 6.000

Miles per person per year

(b) Connected scatterplot zoomed in.

Figure 2.3: An example of a connected scatterplot implemented with RespVis library.

10 2 RespVis Extension

2.4 Small Multiples

A small multiples chart is a series of related charts placed side-by-side or in a grid for comparison. Each
chart should generally use the same scale and axes for better comparison. The series of visualisations help
the user compare different datasets or sometimes different parts of a dataset. The term was popularised
by Edward Tufte. We implemented three small multiples charts for RespVis:

¢ Line Chart
¢ Bar Chart

* Scatterplot Matrix

2.4.1 Line and Bar Chart

For the bar and line chart variants there are three relevant dimensions: outer, cross, and main. The outer
dimension specifies the number of charts. The main dimension is the horizontal axis and is the same for
all charts. The cross dimension is also the same for all charts, but is a linear scale based on the minimum
and maximum values of the data.

For the grid layout, we first compute the number of rows and columns. This is done by taking the
square root of the number of charts to render and rounding it down. Additionally we have a base column
width of 400 pixels defined. This width is multiplied by the device pixel ratio (to take e.g. zoomed-in
browsers into consideration) and then multiplied by the number of computed columns. If the resulting
total width exceeds the width of the chart container, then we simply divide the chart container’s width
by the scaled column width, which will give us the number of columns we could fit into the container.
Now that we know how many columns and rows to render, we can define the grid layout for the CSS
grid template, which is used on a container element inside the chart. The individual sub-charts are then
inserted into this container element. The browser will automatically position these child elements inside
the grid. As mentioned previously, this requires a workaround to make the chart resize its container.
Especially when there is only one column, the number of rows will likely exceed the boundaries of the
chart’s container. With visible overflow, the sub-charts will still be visible, but it is also necessary to give
the chart a bottom margin, so that the container pushes anything beneath it further down. Otherwise, the
chart elements might be visible, but they would overlap with other browser elements.

The main responsiveness of this chart type is the adjustment of the grid template. With small code
adjustments it might also be possible to flip the charts by 90 degrees, but that is currently not implemented.

2.4.1.1 Line Chart

A small multiples line chart is a series of line related charts. An example of a small multiples line chart
series is shown in Figure 2.4. The example shows 6 line charts in a grid, thus the outer dimension is
6. The main dimension is linear for all line charts and cross dimension is a linear scale over all data
points. Figure 2.4a shows the example on a wide window with three columns and two rows. On a narrow
window, the charts line up in a single column, as shown in Figure 2.4b and can be scrolled through. A
video showcasing this behaviour can be seen at https://youtu.be/Q6exalis3fBg.

2.4.1.2 Bar Chart

Figure 2.5 shows an example of a small multiples bar chart implemented with RespVis library. It contains
a series of six bar chart visualizations. The main dimension is band for all bar charts and the cross
dimension is a linear scale over all data points. Figure 2.5a shows the example on wide window and
Figure 2.5b shows the same example on a narrow window. The three-by-two grid is adpated to become a
single column at narrower widths, with vertical scrolling if necessary. A video showcasing this behavior
can be seen at https://youtu.be/7sA_--£C72Y.

https://youtu.be/Q6exaWs3fBg
https://youtu.be/7sA_--fC72Y

Small Multiples 11

Small Multiples Line Chart Small Multiples Line Chart

Engineering Operations . Accounting) e

sanuaAay

B o i
o o . W
s S raw. ks
s s
3 1m0 3 1w T 15 70 35 %0 95 40 45 50 %5 &
3 ’\"_\/,’/‘ Bl /’\/—‘ Months
= = =) Operations
— — =
N S R S R I T N) PO S T a4
Months Months Months B
¢ 5
£
HR . T . Manufacturing B

Months

Accounting

sanuaray
sanuaray
sanuaaay

LoBgEBgsds

= s et v JnManslhsm e e nMnanS(h;u A Months 4
(a) Small multiples line charts in a wide window. (b) Small multiples line
charts in a narrow
window.

Figure 2.4: An example of responsive small multiples line charts implemented with RespVis the

library.
Small Multiples Bar Chart Small Multiples Bar Chart
. Engineering Operations oo Accounting BrgRecEng
g m ® Months
- =] =l - Operations
Months Months Months < i
. HR T . Manufacturing E : I I
= " Months -
. =
i -] Ex:
Months Months Months
(a) Small multiples bar charts in a wide window. (b) Small multiples bar
charts in a narrow
window.

Figure 2.5: An example of responsive small multiples bar charts implemented with the RespVis
library.

2.4.2 Scatterplot Matrix

Our scatterplot matrix implementation is based on our small multiples implementation. A scatterplot
matrix is a square matrix of scatterplots of every pair of dimensions in a multidimensional dataset. For
example, a scatterplot matrix of seven dimensions would be rendered as a seven by seven square grid of
scatterplots. The titles of the dimensions are shown along the diagonal.

In addition to the matrix, we implemented a focus view on the right side of the container. When a
user clicks on a particular scatterplot in the matrix, it is highlighted in red, and is rendered in the focus
view in more detail. In order to implement this, we created two containers, one for the matrix and one
for the focus view. To create the matrix we iterate through all the dimensions of the data and for each
pair of dimensions, we create a scatterplot. Unlike the other small multiples implementations, we do not
compute a grid template based on the container width. The template is always a square grid with as many
rows and columns as there are dimensions in the dataset. The scatterplots in the matrix do not show their

12 2 RespVis Extension

Scatterplot Matrix Scatterplot Matrix

= 2

bill_length_mm

1rq

{ap

wuw q)d

mraq

bill_depth_mm

dap

2
I I
bill_length_mm

bill_length_mm %‘ 2y ?.,} . é :

“

. B > o
. " . b A

R " d" s s
s . LI billdepthmm © J P

Shv AR %

2] E

Raa = B o

£ E) e Y

wuw)

Pt 4

B .

5)
bill_length_mm

(a) Scatterplot matrix in a wide window. g .

(b) Scatterplot matrix in a
narrow window.

Figure 2.6: An example of a responsive scatterplot matrix implemented with the RespVis library.

axes and their axes ticks. This is done for the sake of simplicity of the matrix and for the purpose that
in order to see more details of a particular scatterplot, the user clicks it and it renders in the focus view.
For the focus view functionality, we iterate through all the nodes of the columns and when the node is
clicked, we render its data to the focus view matrix. The currently highlighted chart is also given a red
border in the matrix view.

The responsiveness of the scatterplot matrix is rescaling of the components and rearrangement of the
focus and matrix views depending on the container width. The breakpoint is currently defined as 960
pixels, which is again scaled with the device pixel ratio. Above the breakpoint, the matrix is rendered to
the left and the focus view to the right, but as soon as the container width goes beneath the breakpoint,
the focus view shifts to the upper half of the container and the matrix to the bottom. It is necessary for
the focus view to be above the matrix, as the matrix might grow bigger than the container boundaries.
Just like with the other small multiple implementations, we give the chart container a bottom margin, so
that it doesn’t seem like the charts exceed the container. There is however a limitation to this behavior: if
the chart container is too small in both width and height, then focus and grid view might overlap, as all
the scatterplots have a fixed aspect ratio to force them into square shape. Unfortunately, this means that
they might have a larger height than what would fit into their respective container.

Figure 2.6 shows an example of our implementation, depicting what it could look like both in a wide
and a narrow window respectively. The dataset is taken from Waskom 2014, which originates from Horst
2020. The behaviour can also be observed in the video at https://youtu.be/XAnfRDW2Rso.

https://youtu.be/XAnfRDW2Rso

Chapter 3

Future Work

This chapter provides some ideas for potential future developers. They describe necessary changes to
make our implemented visualisations more responsive and thus more compatible with the overall theme
of the RespVis framework.

3.1 Line Chart

More customisation options could be added. Additionally, the way these options are configured, as part
of the dataset, could be improved upon. This could be something that needs to be considered for the entire
framework. Additionally the conversion to a sparkline is not implemented as a feature of the line chart
component, but is done with regular JavaScript in the line chart example. If it was to be implemented as
a standard feature of the line chart, then one would also have to make it optional, so that the line chart
does not always convert to a sparkline.

3.2 Multi-Line Chart

Currently the multi-line chart implementation does not convert to a sparkline once the width is made
smaller to a mobile phone. This could be done in a similar fashion to the line chart example, but it might
not work with every type of data. The colours for the individual lines are currently picked from a set of
distinct categorial colors. The user could replace them with JavaScript by manipulating the SVG nodes,
but it would be better if it was possible to assign colours to the individual lines when configuring the
chart.

3.3 Connected Scatterplot

For the line chart, it is already possible for the user to specify line width and color, and whether to have a
smooth curve or not, but that is not yet customisable for the connected scatterplot.

3.4 Small Multiples

For all small multiples examples, so-called brushing could be implemented. Whenever the mouse points
over certain data points in one of the views, the same data points light up in the other views. One can
also brush over multiple data points and have the same effect. The idea is that the user gets a better
understanding of the visualized data by quickly examining the selected data in the multiples views.

Another area that needs improvement is how the grid elements are rendered. As mentioned previously,
this is done with a workaround to ensure that the charts make their container grow. While it usually
works, it is not a clean solution, so maybe there could be a better way to do that. Especially for the

13

14 3 Future Work

scatterplot matrix a different approach could be better. If the container of the chart becomes too small,
then both the focus view and the grid might overlap, as all scatterplots are forced to be in a square shape,
which causes them to potentially overflow.

Chapter 4

Concluding Remarks

The framework was pleasant work with and make extensions to. Our implementations however are not
perfect - there are still possible improvements, especially when it comes to customization. Especially
when it comes to customization of charts the framework could use some improvement. Whenever we
made it possible for the user to customize the styling of a chart component, we did that as variables of
the chart dataset, which is alternatively done by manipulating the SVG directly. This could be done for
other charts as well, which might be more accessible to users.

15

16

4 Concluding Remarks

Bibliography

Bostock, Mike [2018]. Connected Scatterplot. 09 May 2018. https://observablehq.com/@d3/connected-
scatterplot (cited on page 8).

Bostock, Mike [2021]. D3 Data-Driven Documents. https://d3js.org/ (cited on page 1).

Coyier, Chris [2021]. A Complete Guide to Flexbox. 01 Jul 2021. https://css-tricks.com/snippets/css/
a-guide-to-flexbox/ (cited on page 1).

Graz [2020]. Fire Department Call-Outs from 1999 to 2015. City of Graz, 17 Mar 2020. https://data.
gv.at/katalog/dataset/9e96d656-225d-4129-85cc-2279a7adf0e7 (cited on page 5).

Horst, Allison [2020]. Palmer Penguins. 10 Jun 2020. https://github.com/allisonhorst/palmerpenguins
(cited on page 12).

House, Chris [2021]. A Complete Guide to Grid. 12 May 2021. https://css-tricks.com/snippets/css/
complete-guide-grid/ (cited on page 1).

Oberrauner, Peter [2021]. RespVis. https://github.com/AlmostBearded/respvis (cited on page 1).

Romain, Francgois [2021]. Smooth a Svg path with cubic bezier curves. 05 Jul 2021. https://
francoisromain . medium . com/ smooth - a- svg-path-with- cubic - bezier - curves - e37b49d46c74 (cited

on pages 5-6).

Waskom, Michael [2014]. seaborn-data. 24 Feb 2014. https://github.com/mwaskom/seaborn-data (cited
on page 12).

17

https://observablehq.com/@d3/connected-scatterplot
https://observablehq.com/@d3/connected-scatterplot
https://d3js.org/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://data.gv.at/katalog/dataset/9e96d656-225d-4129-85cc-2279a7adf0e7
https://data.gv.at/katalog/dataset/9e96d656-225d-4129-85cc-2279a7adf0e7
https://github.com/allisonhorst/palmerpenguins
https://css-tricks.com/snippets/css/complete-guide-grid/
https://css-tricks.com/snippets/css/complete-guide-grid/
https://github.com/AlmostBearded/respvis
https://francoisromain.medium.com/smooth-a-svg-path-with-cubic-bezier-curves-e37b49d46c74
https://francoisromain.medium.com/smooth-a-svg-path-with-cubic-bezier-curves-e37b49d46c74
https://github.com/mwaskom/seaborn-data

	Contents
	List of Figures
	List of Listings
	1 Introduction
	1.1 Layouting
	1.2 Code Example
	1.3 Visualisation Types

	2 RespVis Extension
	2.1 Line Chart
	2.2 Multi-Line Chart
	2.3 Connected Scatterplot
	2.4 Small Multiples
	2.4.1 Line and Bar Chart
	2.4.1.1 Line Chart
	2.4.1.2 Bar Chart

	2.4.2 Scatterplot Matrix

	3 Future Work
	3.1 Line Chart
	3.2 Multi-Line Chart
	3.3 Connected Scatterplot
	3.4 Small Multiples

	4 Concluding Remarks
	Bibliography

