Accessible Charts With AChart Reader

Group 1

Lukas Bodner, Daniel Geiger, and Lorenz Leitner

706.057 Information Visualisation SS 2020
Graz University of Technology

29 June 2020

Abstract

Scalable Vector Graphics (SVG) charts cannot be read out by screen readers used by visually
impaired users. They need additional internal markup, which describes all the important
elements of a chart. Accessible Rich Internet Applications (ARIA) does exactly that. AChart
Reader uses this ARIA markup to produce a textual summary of a chart and to read out the
chart for visually impared users to easily unterstand a chart and its meaning, as well as
enables users to explore the chart in an interactive way by navigating through the elements
by means of key presses.

© Copyright 2020 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents

List of Figures

List of Listings

1

Introduction

1.1 SVG Charts
1.2 Accessible Charts
1.3 ARIA
1.4 Example Chart

1.5 Inspiration - Describler

AChart Reader Original Version

2.1 Main Functionality

2.1.1 Web Application
2.1.2 GraphicPanel L
2.13 ReaderPanel
2.1.4 Speech Synthesizer
2.1.5 Synchronization
2.2 Additional Functionality
221 Statistics e e e e e e e e
222 Sorting e e e e e
23 PUrposes e e e
2.3.1 Developers

2.3.2 Users

2.4 Example of Original AChart Reader

AChart Reader Changes
3.1 MainChanges e e e
3.1.1 UserInterface Overhaul
3.1.1.1 Responsiveness v vt i e e e e e e
3.1.1.2 Highlighting Changes
3.1.1.3 HeaderMenu
3.1.14 FontChanges
3.1.2 Synchronization
3.1.3 Internal Synthesizer Voice Selection

ii

iii

— o e e

3.1.4 Standalone Versiono e 11

3.1.4.1 Electron Development Version 11

3.1.42 Binarieso 12

3.1.43 Installers oL 12

322 OtherChanges o o i it e e 12
3.2.1 Automatic Sample Files o o 12

3.2.2 No Automatic Pre-Selection of Image onImageLoad 12

3.2.3 Generalization of Sample Files and User-Uploaded Files 12

3.24 Numbered List Instead of Unordered List 13

325 Removalof Modes 13

3.2.6 Instant Element Readouton FirstOpen 13

3.2.7 Legacy Naming Convention Removal 13

3.2.8 Placeholder Text when No ChartisChosen 13

3.29 Readme Reflectionof Changes 13

3.3 Showcase Video oL e 13

4 Conclusion 15
Bibliography 17

ii

List of Figures

1.1 Example of a Simple SVG Chart With ARIA Markup

2.1 Original User Interface: Top Half
2.2 Original User Interface: Bottom Half

3.1 New User Interface: Wide
3.2 New User Interface: Narrow

ii

v

List of Listings

1.1 SVGCodeof Example Chart

vi

Chapter 1

Introduction

This chapter explains SVG charts and how they can be marked up to be more accessible.

1.1 SVG Charts

Scalable Vector Graphics (SVG) graphics are vector-based graphics. SVGs can be used for icons, simple
images or charts. Due to the vector-based nature, they compress well and are small in file size. They can
also easily scale up and down without any loss in image quality.

SVGs can be created by many different programs or they can be written manually and be opened in
any web browser.

1.2 Accessible Charts

SVG charts are hard to understand for screen readers. They do not use the alt tag as in Hypertext Markup
Language (HTML), which helps screen readers understand what is displayed in an image. Charts need
to have additional code, which describes the image for a screen reader.

1.3 ARIA

Accessible Rich Internet Applications (ARIA) [W3C 2020] provides the role property, as well as many
others, to describe the elements of an SVG chart. The role of an element signifies its use in the SVG
chart. There are different roles for:

e Chart and data areas
e X and Y axes and labels

» Data set, series, points and values

There is also the ARIA property aria-labelledby, which can be used to reference other elements
such as labels and data points.

1.4 Example Chart

In Figure 1.1 an example chart is shown. It shows the three days Friday to Sunday on the x-axis and on
the y-axis the number of finished tasks during these days.

An excerpt of the corresponding SVG code of the example chart is shown in Listing 1.1. There
are different roles for the chart, heading, chartarea, xaxis, yaxis, dataset and datapoints as well as the
datavalues. For the datavalue “8 Tasks” there is also the tag aria-1labelledby which references the x-axis
label.

O 00 N AN AW =

e e e
AN N kAW = O

1 Introduction

N
o

Finished Tasks

—

Friday ' Saturday i Sunday

Figure 1.1: An example of a simple SVG Chart, that is marked up with ARIA. [Chart created by creators
of AChart Reader.]

<g id="ChartRoot" font-family="Arial" role="chart" aria-charttype="bar"
tabindex="0">
<title role="heading" >Finished tasks per day</title>
<g>
<rect role="chartarea" x="65" y="35" width="445" height="335"></rect>
</g>
<g id="xScale" role="xaxis" aria-axistype="category" tabindex="0">
<title role="heading" >Days</title>
<text role="axislabel" id="x-Friday" x="121" y="388">Friday</text>

<g id="dataarea" role="dataset" >

<g id="datapoint_0" role="datapoint" tabindex="0" fill="rgb(97, 115, 169)">

<title role="datavalue" aria-labelledby="x-Friday">8 Tasks</title>
<path d="M83,147 H158 V370 H83 V147"></path>

Listing 1.1: Shows the code of the SVG of the Example Chart.

Inspiration - Describler

1.5 Inspiration - Describler

Describler [Schepers 2020] is a prototype to read out SVGs. An SVG file can be uploaded and when
pressing fab or arrow keys, it can be navigated through the SVG file and the website will read out the

ARIA markup.

1 Introduction

Chapter 2

AChart Reader Original Version

The basis of this project is the AChart Reader web application developed by master student Christopher-
Alexander Kopel. The master thesis includes the implementation of the AChart Reader application. The
matter that Christopher is visually impaired did not hinder him to implement the application. In fact, this
actually is the motivation behind the thesis.

The goal of this project is to (1) evaluate the original application (2) analyse it regarding functionality
and usability (3) identify and fix implementation errors. In Chapter 2 the original functionality and
behaviour of the application is described.

2.1 Main Functionality

The main task of AChart Reader is to imitate the behaviour of a screen reader. What a screen reader can
do for native and web applications, AChart Reader can do for Scalable Vector Graphics (SVG).

2.1.1 Web Application

The AChart Reader application was initially implemented as a web application. While this was fine during
the beginning of the project, the improvement of the user interface and usability was target through this
project. The goal was to let the application look more like a native and standalone version rather than a
website.

2.1.2 Graphic Panel

The graphic panel is responsible for the visual representation of the SVG file. It is the first component that
will be generated after selecting or uploading a SVG file. Figure 2.1 show the graphic panel below the
introduction text. While this panel is not important for the visually impaired user, it serves as a starting
point for developers which test the correct markup of the SVG file.

2.1.3 Reader Panel

After the generation of the graphic panel all the required information is uploaded to the web server. The
next step is to extract the textual information of the SVG file added by the ARIA markup. This information
enables the generation of the textual summary. Figure 2.2 shows the reader panel. The reader panel has
a tree-like structure which supports navigation using the tabulator and arrow keys.

2.1.4 Speech Synthesizer

Whenever a user navigates through the reader panel, AChart Reader will speak the textual content of the
visited node out loud. This is done using a speech synthesizer. In this sense, AChart Reader acts as a
screen reader. However, at the initial state the selection and workflow of the synthesizer was not bug-free.

6 2 AChart Reader Original Version

2.1.5 Synchronization

AChart Reader supports two ways of interacting with the application. Firstly, it is possible to navigate
through the chart using the navigation keys. Secondly, it is also possible to click on the SVG graph
itself. During the navigation the currently highlighted node should be synchronized on both panels. So
whenever a user clicks on the graphic panel it should sync the reader panel and vice versa. However,
initial inspection of the tool revealed synchronization problems. Therefore, one task was to improve and
fix the synchronization issues.

2.2 Additional Functionality

In addition to the screen reader functionality, AChart Reader does also provide further interesting features.
These features help a visually impaired user to get a better understanding of the chart and its included
data.

2.2.1 Statistics

During creation of the reader panel the application computes some statistical values. The list of values
includes some general information, for instance the number of data points, or some statistical values, for
example the sum and the average of all data points or the median. The additional information is valuable
and enables another source of information for the user.

2.2.2 Sorting

Furthermore, the reader panel supports sorting of the data set. Initially the reader panel displays the
data in its original order. After the initiation it is possible to sort the data points either in ascending
or descending order. Note that the ordering does only affect the order of the enumerated data points
inside the reader panel. The visual representation of the SVG file inside the graphic panel will remain
the same. While this information may be obvious when looking at the chart, again, this feature aids a
visually impaired user.

2.3 Purposes

The implementation of AChart Reader serves several purposes. The main target groups are developers
and visually impaired users.

2.3.1 Developers

As already described in the introduction, the SVG files must consist of valid ARIA markup. Therefore, a
developer of accessible charts can use the AChart Reader application to verify the correct syntax of the
SVG file. Further, the textual summary of the reader panel helps to debug incorrect ARIA markup.

2.3.2 Users

The main purpose of AChart Reader is to aid visually impaired users. AChart Reader acts a a screen
reader for accessible charts. Apart from the audio feedback, AChart Reader does also provide valuable
information about the data set, a set of statistical values.

2.4 Example of Original AChart Reader

Figure 2.1 and 2.2 combine the original user interface of the AChart Reader application. The initial
application shows the following components one below the other:

Example of Original AChart Reader 7

AChart Reader Demo

This page is intended to test AChart Reader, the screen reader for charts in SVG format. Choose an SVG chart to explore, then
click on the graphic to start the application!

Choose a sample SVG chart: | manual-bar-chart-tasks.svg ¥ | or upload an SVG file from your computer:

Choose File | No file chosen

Graphic: manual-bar-chart-tasks.svg

10

9]

Finished Tasks

Friday ' Saturday ' Sunday

Figure 2.1: The top half of the user interface starts with an initial description of the application. It
includes a list of sample SVG files and a button to upload custom SVG files. Below the
introduction, the graphic panel shows the selected bar chart. [Screenshot taken by the authors
of this report.]

Application description

File selection

Graphic panel

* Reader panel

Most of the time the graphic and reader panel did not fit on the same browser page, due to the large
resolution of certain SVG files. The future application will support a more responsive user interface,
which uses the empty space of a wider screen better.

2 AChart Reader Original Version

| Disable buittin speech (Alt+S) | Switch to Application Mode (Alt+A) | Help (F1) |

¥ Graphic: "Accessible SVG Bar Chart", contains 1 chart

¥ Chart: "Finished tasks per day", contains 1 data series

Bar chart showing "Finished Tasks" in relation to "Days" from Friday to Sunday
x-axis: "Days", contains 3 labels ranging from Friday to Sunday

y-axis: "Finished Tasks", ranging from 1 to 10

¥ Data Series: contains 3 items

Sort items: | in original order v

« Friday: 8 Tasks
« Saturday: 10 Tasks
« Sunday: 4 Tasks

| Show statistics for this data series

Close (ESC)

Figure 2.2: The bottom half of the user interface includes the reader panel. It includes the tree-like
textual summary of the accessible SVG chart. [Screenshot taken by the authors of this report.]

Chapter 3

AChart Reader Changes

AChart Reader is an existing and ongoing project. During the Information Visualisation course, a task
was given to make some improvements to the original version of AChart Reader, as it existed up to the
point of the start of Information Visualisation. After the course is done, the changes are handed back to
the original developer of AChart Reader, and if possible incorporated into the final product.

3.1 Main Changes

The following shows the changes that have the most impact on AChart Reader, regarding functionality or
just visual aspects.

3.1.1 User Interface Overhaul

A main task was to improve the user interface of the original AChart Reader version. The original version
very much looked like a static rigid web page. On top there was an intro text, the chart selection, below
that the graphic, and below that, the reader panel.

It was rather obvious that the application was just a single “demo” web page, and therefore it was
necessary to change the look and feel to be more reminiscent of an application rather than a website.
Especially in the standalone versions of the program this would have stood out in an unpleasant way, as
users do not like to be reminded that their binary desktop application is actually just a urlbar-less browser
window running JavaScript and HTML.

3.1.1.1 Responsiveness

One of the first things that was changed was the fixed placing of top-to-bottom graphic and reader panel.
Now, when the width is wide enough, the graphic panel will be on the left, and the reader panel will be
on the right. If the width becomes narrower, the graphic panel will be on top, and the reader panel will
be below that, accommodating for the narrower width.

3.1.1.2 Highlighting Changes

Part of the user interface is the way elements that are currently focused and read out by the synthesizer
voice are highlighted. It used to be that all highlighted elements used the same rather jarring pink
background color as highlighting. Now, the currently selected elements in the text view get a dotted
outline highlighting, as well as the SVG elements, however on those, a mask or fill highlighting can also
be chosen, as the most suitable one depends on the SVG chart.

10 3 AChart Reader Changes

Disable builiin speech Switch to Application

About aria-barchartsvg ~ File upload (AlL+S) Mode (Alt+A)

Help (F1)

Graphic: aria-bar-chart.svg

Reader

¥ Graphic: "Accessible SVG Chart", contains 1 chart

¥ Chart: "Time Spent on Creating a Presentation", contains 1 data series
Bar chart showing "Hours Working on this Presentation" in relation to
"Weekdays" from Saturday to Tuesday

x-axis: "Weekdays", contains 4 labels ranging from Saturday to Tuesday
y-axis: "Hours Working on this Presentation", ranging from 0 to 12

¥ Data Series: contains 4 items

Sort items:

1. Saturday: 8 Hours
2. Sunday: 6 Hours

3. Monday:.4.5 Hours
4. Tuesday: 12 Hours

Show statistics for this data series

Close (ESC)

12+ §7

Hours Working on this Presentation

Y

Saturday Sunday Monday Tuesday

Figure 3.1: The new user interface shown with a larger width. The graphic panel is on the left and
the reader panel is on the right. The header menu buttons are visible. [Screenshot taken by
the authors of this report.]

3.1.1.3 Header Menu

Instead of the inline intro text and the SVG chart selection which was placed haphazardly on top of the
graphic panel, there is now a header menu, with buttons for these functions. Also incorporated in the
header menu are some of the option buttons of AChart Reader, which used to be in the reader panel itself,
however, since they are global options and do not necessarily pertain to a specific open reader panel, the
placement in the header menu seems more appropriate.

3.1.1.4 Font Changes

A rather small change but with a large impact was changing the font from the default serif browser font
to a sans-serif version. This makes it far less obvious that it is actually just a web page that is run.

Figures 3.1 and 3.2 show the new user interface, with a larger and narrow width, respectively.

3.1.2 Synchronization

The synchronization of the graphic panel and the reader panel is a change with a focus on improved
usability. As it used to be, clicking, selecting or focusing in any way by navigating to an element in
the text in the reader panel was not reflected in the graphic panel in any way, at least not consistently.
Navigating through the SVG elements in the graphic panel also did not trigger a readout of the text
elements in the reader panel.

Now, whenever an SVG element like a data point is focused in the graphic panel, the corresponding
text element in the reader panel is focused, highlighted and read out, and vice versa.

3.1.3 Internal Synthesizer Voice Selection

Initially, the voice readout audio did not work on all configurations. It was ascertained that this was due
to the fact that a synthesizer must be installed in some way in a configuration for the audio to be heard.
For example, if Google Chrome is used, which ships with its own proprietary Google voices, it works
fine. If any browser on Windows is used, which comes with a synthesizer installed on the operating
system, it also works fine. However, if a configuration without either of these installed synthesizers is

Main Changes 11

Graphic: aria-bar-chart.svg

Remove SVG

12 4 W

Hours Working on this Presentation
R R R R

Saturday Monday Tuesday

Reader

¥ Graphic: "Accessible SVG Chart", contains 1 chart
¥ Chart: "Time Spent on Creating a Presentation”,

Figure 3.2: The new user interface shown with a smaller width. The graphic panel is on top and the
reader panel is below it. The header menu buttons are not visible but can be faded in by
clicking on the hamburger menu button. [Screenshot taken by the authors of this report.]

used, for example Firefox or Chromium on Linux, there will be no audible voice readout. In such a
case, a synthesizer voice must be installed locally on the operating system. An example of such a local
installation would include Speech Dispatcher [Free(B)Soft 2020] and eSpeak BG [eSpeak NG 2020].

What changed in AChart Reader itself was the selection of an appropriate voice out of all available
voices. In specific, an English, ideally US or British English voice must be chosen and is now chosen, so
that the English text elements that are read out do not sound garbled, as can be imagined if for example
a German synthesizer voice tries to read out English text. If no English voice is found, the first available
voice will be used, although it will sound less than ideal. For the future, the voice selection depends on a
language variable which is currently hardcoded to English, however it could easily be set to something
different, maybe by the user via a selection menu.

3.1.4 Standalone Version

A standalone desktop version of the browser-only-single-web-page version was created, for easier dis-
tribution and self-hosting without the need of a development setup or local web server, using Electron
[OpenJS Foundation 2020]. Different version were created, as well as a development version, and scripts
for creating these standalones for future releases.

3.1.4.1 Electron Development Version

Before any binary packages are created it is beneficial for a developer to run the “standalone” version in
an Electron window to see whether everything is working correctly. This can be done using the locally
installed Electron program, but still uses the development setup of AChart Reader and its files. Running
npm run electron accomplishes this.

12 3 AChart Reader Changes

3.1.4.2 Binaries

If everything is working fine in the development version using Electron, binaries for different platforms
can be created using npm run create-packages-<platform>, where <platform> is one of:

e all - All platforms
¢ linux - Linux
* mac - Mac

¢ win - Windows

These are already packaged binaries that can be run from any location on an independent operating
system, without the need of having the development version and development dependencies of AChart
Reader set up.

3.1.4.3 Installers

Using these binaries, installers for different platforms can be created as well, usingnpm create-installer
-<type>, where <type> is one of these installer types:

¢ deb - Debian, Ubuntu
¢ rpm - Redhat, Fedora, CentOS
¢ dmg - Mac

¢ win - Windows

These scripts can be used by the developers that take on the project from this point on to create future
releases for future versions of AChart Reader. Another automation script which removes all these binary
files is npm run clean.

3.2 Other Changes

Some of the other more minor changes are described below, as well as additional information that pertains
to some of these changes.

3.2.1 Automatic Sample Files

Originally, the drop-down menu of sample SVG charts was populated by a hardcoded list. Now, during
build time, the list of files in the samples directory is used to generate that list automatically. Also fixed
was the copying of that directory to the build directory during build time, which was missing.

3.2.2 No Automatic Pre-Selection of Image on Image Load

A small change. When first opening an image, it was automatically pre-selected and highlighted for some
reason. It is not changed so that the image is not highlighted any more automatically when first opening
it.

3.2.3 Generalization of Sample Files and User-Uploaded Files

There were some strange discrepancies regarding the choice of samples files or uploading own files. Only
one sample chart at a time could be visible, but multiple charts of user-origin could be uploaded and
visible. The code for these functions was also duplicated heavily. Now, both of these functions behave
the same way, and use the same code. Only one chart can be visible simultaneously, and if a new chart is
chosen, the existing chart is replaced.

Showcase Video 13

3.2.4 Numbered List Instead of Unordered List

The data points used to be represented in an unordered list of bullet points. In itself that is fine, however,
when sorting the items via the sort functions, the way in which they have been sorted is not reflected in
an unordered list. Due to this, a numbered list is now used, which reflects the sorting after the fact.

3.2.5 Removal of Modes

The on-demand additional statistics about a data series featured an entry of modes, that is the value which
occurs most often, which is rather uninteresting in most data series. Therefore, this entry was removed
from the statistics function and display.

3.2.6 Instant Element Readout on First Open

As it used to be, when first pressing anywhere on the chart, the reader panel opened and read out “AChart
Reader”, focusing the title element at the top of the reader panel. Now, the element which is clicked on
first is read out when the reader panel opens, for example, if a data point is the first element that is clicked,
the reader panel opens and reads out, highlights, and focuses that element.

3.2.7 Legacy Naming Convention Removal

What is now referred to as the graphic and reader panel was not always referred to in this way. It used to
be that the reader panel was called the main_application in the code and its title in the web page was
“AChart Reader”. This stemmed from some legacy reasons for the initial plan of the application to be an
add-on that can be dropped into any web page with an SVG chart. However, in its current state of a more
self-sufficient application, the separation into graphic and reader panel, and the removal of the “AChart
Reader” title in the reader panel seems appropriate, as well as reflection in the code of these changes.

3.2.8 Placeholder Text when No Chart is Chosen

When the application is opened now it seems rather empty, as the intro text is hidden in the “About”
button in the header menu. To assure the user that everything is worked as intended, as small placeholder
text is placed beneath the header menu that prompts the user to select a chart to start the process. This
placeholder text will vanish when a chart is visible, and reappear when a chart is removed, that is no chart
is visible again.

3.2.9 Readme Reflection of Changes

Of course, all the changes regarding the usage and commands to build and run the application are reflected
in the new version of the Readme file, which is mainly used by developers so that they can contribute to
AChart Reader.

3.3 Showcase Video

A showcase video [Bodner et al. 2020] was produced that shows a live usage of AChart Reader, explaining
how to use it and showing a deeper look into some of the functionality.

14

3 AChart Reader Changes

Chapter 4

Conclusion

AChart Reader can be used by any developer or person to test their ARIA marked-up SVG charts, but it
can also be used by visually impaired users to understand already marked-up charts. AChart Reader could
be further improved and also be implemented into a browser extension, which enables plugin capability
to use AChart Reader on any web page that has an ARIA marked-up SVG chart embedded, to increase
the reach of users. The function for detecting SVG content on a web page already exists in the code base.
Future work to have some of the role properties and similar attributes standardized is needed. AChart
Reader’s ultimate goal is to make the web more accessible for all people.

15

16

4 Conclusion

Bibliography

Bodner, Lukas, Daniel Geiger, and Lorenz Leitner [2020]. Showcase of AChart Reader. 17 Jun 2020.
https://youtu.be/7unl2al9ghc (cited on page 13).

eSpeak NG [2020]. eSpeak NG. 14 Jun 2020. https://github.com/espeak-ng/espeak-ng (cited on
page 11).

Free(B)Soft [2020]. Speech Dispatcher. 10 Jun 2020. https://freebsoft.org/speechd (cited on page 11).

OpenJS Foundation [2020]. Electron. 24 Jun 2020. https://electronjs.org (cited on page 11).

Schepers, Doug [2020]. Describler. 24 Jun 2020. http://describler.com (cited on page 3).

W3C [2020]. WAI-ARIA Graphics Module. 27 Jun 2020. https://w3c.github.io/graphics-aria (cited on
page 1).

17

https://youtu.be/7unJ2aU9ghc
https://github.com/espeak-ng/espeak-ng
https://freebsoft.org/speechd
https://electronjs.org
http://describler.com
https://w3c.github.io/graphics-aria

	Contents
	List of Figures
	List of Listings
	1 Introduction
	1.1 SVG Charts
	1.2 Accessible Charts
	1.3 ARIA
	1.4 Example Chart
	1.5 Inspiration - Describler

	2 AChart Reader Original Version
	2.1 Main Functionality
	2.1.1 Web Application
	2.1.2 Graphic Panel
	2.1.3 Reader Panel
	2.1.4 Speech Synthesizer
	2.1.5 Synchronization

	2.2 Additional Functionality
	2.2.1 Statistics
	2.2.2 Sorting

	2.3 Purposes
	2.3.1 Developers
	2.3.2 Users

	2.4 Example of Original AChart Reader

	3 AChart Reader Changes
	3.1 Main Changes
	3.1.1 User Interface Overhaul
	3.1.1.1 Responsiveness
	3.1.1.2 Highlighting Changes
	3.1.1.3 Header Menu
	3.1.1.4 Font Changes

	3.1.2 Synchronization
	3.1.3 Internal Synthesizer Voice Selection
	3.1.4 Standalone Version
	3.1.4.1 Electron Development Version
	3.1.4.2 Binaries
	3.1.4.3 Installers

	3.2 Other Changes
	3.2.1 Automatic Sample Files
	3.2.2 No Automatic Pre-Selection of Image on Image Load
	3.2.3 Generalization of Sample Files and User-Uploaded Files
	3.2.4 Numbered List Instead of Unordered List
	3.2.5 Removal of Modes
	3.2.6 Instant Element Readout on First Open
	3.2.7 Legacy Naming Convention Removal
	3.2.8 Placeholder Text when No Chart is Chosen
	3.2.9 Readme Reflection of Changes

	3.3 Showcase Video

	4 Conclusion
	Bibliography

