
Similarity Map Add-in for LibreOffice Calc

Group 5

Karmen Gostiša
Anastasiia Klimashevskaia

Jaka Konda
Günther Moser

Institute of Interactive Systems and Data Science (ISDS),
Graz University of Technology

A-8010 Graz, Austria

30 Jun 2019

Abstract
This project paper presents the LibreOffice Calc Add-in implementation of a Similarity
Map, a visualisation technique used for 2D projection of multidimensional data. Several
implemented dimensionality reduction algorithms are discussed and instructions on how to
install and use the Add-in are provided.

© Copyright 2019 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

1 Introduction 1

2 LibreOffice Calc 3
2.1 User interface . 3
2.2 Features . 4

3 Similarity Map and Algorithms 5
3.1 Similarity Map . 5
3.2 Implemented algorithms . 5

3.2.1 Principal Component Analysis (PCA) . 5
3.2.2 Multidimensional Scaling (MDS) . 6
3.2.3 Isomap . 6
3.2.4 T-distributed Stochastic Neighbor Embedding (t-SNE) 7

4 Expanding LibreOffice Calc with Similarity Map Add-in 9
4.1 Required Add-in structure . 9

4.1.1 Programming Languages . 9
4.1.2 Extension description . 9
4.1.3 Manifest . 10
4.1.4 Menu and Toolbar . 10

4.2 Connecting to LibreOffice . 10
4.3 User Interface . 13
4.4 Head Detection . 13
4.5 Algorithms . 14
4.6 Creating plots . 15

5 User guide 17
5.1 Installation . 17
5.2 Step-by-step guide . 18

6 Conclusion 21

Bibliography 23

i

ii

List of Figures

2.1 Screenshot of the LibreOffice Calc Standard Toolbar interface. 3

3.1 The Euclidean and geodesic distances on a 2D circular manifold. 7

4.1 Dialog window to select a similarity map algorithm. 14
4.2 An example of a data table with empty top left cell. 14

5.1 Data selection to create a similarity map. 18
5.2 "Similarity Map" tool button. 19
5.3 Dialog window with algorithm options. 19
5.4 Similarity map plotting result. 20

iii

iv

Chapter 1

Introduction

Nowadays datasets may contain a lot of attributes that are difficult to visualise. Because of that, it
is important to reduce the number of attributes by using dimensionality reduction techniques. Using
feature projection, we transform the data from high-dimensional space to low. Projecting the data in
lower-dimensional space (such as 2 or 3-dimensional) is useful for creating visualisations that may be of
great help to gain insight or better understand complex dataset, such as identifying clusters or outliers.
A 2D visualisation technique where distances between plotted points represent the similarity, is called a
Similarity Map.

This project work presents the LibreOffice Calc Add-in implementation of a Similarity Map. Add-in
provides a way to create Similarity Maps using different dimensionality reduction algorithms such as
PCA, MDS, Isomap and t-SNE.

The paper is organised as follows: first LibreOffice Calc is presented, describing the user interface and
features. Afterwards, Similarity Map technique is explained and a theoretical overview of implemented
dimensionality reduction algorithms is provided. Then, the Similarity Map Calc Add-in implementation
is presented and instructions on how to install and use it are provided. In the end, a conclusion about the
development of Add-in is drawn.

1

2 1 Introduction

Chapter 2

LibreOffice Calc

LibreOffice Calc [LibreOffice Calc 2019] is a spreadsheet component of the office productivity suite
LibreOffice [LibreOffice 2019]. It is freely available and open-source software, released under the
Mozilla Public License. Calc can be expanded by Add-ins, external modules that implement additional
functions for working with spreadsheets.

2.1 User interface
LibreOffice provides different user interface options and icon styles. The development of user interfaces is
moving towards modern options such as tabbed or grouped icons [LibreOffice Help 2019]. The traditional
standard toolbar (see Fig. 2.1) is also available.

Figure 2.1: Screenshot of the LibreOffice Calc Standard Toolbar interface.

3

4 2 LibreOffice Calc

2.2 Features
Features provided by LibreOffice Calc include [Calc Filters 2019]:

• Functions to create formulas for complex calculations on data, including those for imaginary num-
bers [Add-in Functions 2019].

• Database functions to filter, store and arrange data.

• A wide range of dynamic 2D and 3D charts.

• Macros to automate common repetitive tasks using scripting languages such as LibreOffice Basic,
JavaScript, Python and BeanShell.

• Ability to open, edit or save OpenDocument, Excel, CSV, PDF and several other formats.

Chapter 3

Similarity Map and Algorithms

This Chapter describes the Similarity Map visualisation and provides the overview of implemented
algorithms used to create such visualisations.

3.1 Similarity Map
A Similarity Map is a visualisation technique used for 2D projection of multidimensional data. The
distances between plotted points represent the similarity - the more similar the points are, the closer they
are.

3.2 Implemented algorithms
Different algorithms can be used to create a Similarity Map. In this Section we present the ones that were
implemented in this project work.

3.2.1 Principal Component Analysis (PCA)
The first and probably themost standardmethod used for dimensionality reduction is Principal Component
Analysis (PCA). In geometrical terms, PCA reduces the dimension of a dataset by projecting it onto a
lower-dimensional subspace that retains asmuch of the original dataset characteristics as possible. Smaller
datasets are easier to analyse and visualise. PCA does not involve any randomness so it is classified as a
deterministic algorithm.

It comprises four steps [Holland no date]:

1. Standardisation: In order to prevent variables with larger ranges to dominate over those with small
ranges, data must be transformed to comparable scales. Using maths, this can be done by subtracting
the mean (µ) from value of each variable (x) and dividing by the standard deviation (σ):

z =
x − µ
σ

(3.1)

2. Computation of Covariance Matrix: Sometimes variables are so highly correlated they contain
redundant information. A covariance matrix helps to identify relationships and correlations between
variables. It is a symmetric matrix with the length of the number of dimensions and it contains
the covariances associated with all possible pairs of the initial variables. An example of covariance
matrix for 3-dimensional data is ������Cov(x, x) Cov(x, y) Cov(x, z)

Cov(y, x) Cov(y, y) Cov(y, z)
Cov(z, x) Cov(z, y) Cov(z, z)

������
5

6 3 Similarity Map and Algorithms

Covariance is commutative, so the upper and lower triangular areas are equal, and covariance of a
variable with itself is its variance, so in the diagonal there are variances of each initial variable. The
correlation can be determined by looking at the sign of covariance; if it is positive, then the two
variables are correlated in a way they increase or decrease together; or if it is negative, variables are
inversely correlated, meaning one increases when the other decreases.

3. Identification of principal components: To determine new variables that retain as much in-
formation of initial variables as possible, also called principal components, we need to compute
eigenvectors and eigenvalues. The idea is to do such linear combination of the initial variables,
so principal components are uncorrelated and first components hold most of information, ie. the
largest variance. Dimensionality reduction can then be done by discarding components with low
information. Eigenvectors of the covariance matrix are directions of axes with most information, that
we call principal components. Eigenvalues represent eigenvectors coefficients that give the amount
of variance in each principal component. To get principal components in order of significance, the
ranking of eigenvectors in order of their eigenvalues should be done.

4. Dimensionality reduction: Eigenvectors of the components that we decide to keep, form a matrix
called feature vector. In the last step, we want to reorient the data from original axes to the ones
represented by the principal components. This can be done by multiplying the transpose of the
feature vector (λ) by the transpose of the original data (X) set as follows:

Xt = λ
T ∗ XT (3.2)

3.2.2 Multidimensional Scaling (MDS)
Multidimensional scaling is a visual representation of similarity between individual cases of a dataset.
Objects that are more similar have shorter distances so they are drawn closer together than objects that
are less similar (and have larger distances). Besides interpreting similarity on a graph, MDS is also used
for a dimensionality reduction.

The basic steps of the method include [Buja et al. 2008]:

1. Assigning points to random coordinates in multidimensional space, typically 2 or 3-dimensional,
as higher dimensional spaces are difficult to model.

2. Calculating Euclidean distances for all pairs of points and construct similarity matrix.

3. Comparing the similarity matrix with the original input matrix by evaluating the stress function
that measures differences between predicted and actual distances. The smaller the value, the greater
the correspondence.

4. Adjusting coordinates of each point in a direction that best minimise stress.

5. Repeating steps from 2 to 4 until stress stays the same.

The random number generator is used in Step 1 to initialise coordinates, making MDS a non-
deterministic algorithm.

3.2.3 Isomap
Isomap is an instance of isometric mapping methods that extend MDS (see Subsection 3.2.2) by trying to
preserve geodesic distances in the lower dimension. The classic MDS uses Euclidean distance to estimate
the similarity between data points. This distance holds good only if neighbourhood structure can be
approximated as linear, while Isomap introduces the geodesic distance as graph distance that also works
well in non-linear manifolds (see Fig. 3.1). Like MDS, Isomap is also a non-deterministic algorithm. It
actually differs from MDS in initial steps only [Dimension Reduction - IsoMap 2019].

Implemented algorithms 7

a b

c d

a c d b
Euclidean

a c d b

Geodesic

Figure 3.1: The Euclidean and geodesic distances on a 2D circular manifold. Redrawn from [Di-
mension Reduction - IsoMap 2019].

The Isomap algorithm is comprised of the following stages [Tenenbaum et al. 2000]:

1. Determining neighbours of each point: Neighbours can either be all points in some fixed radius
or K-nearest neighbours.

2. Constructing neighbourhood graph: Each point is connected to other based on a criteria chosen
in Step 1 using Euclidean distance as the edge length.

3. Computing the shortest path between two nodes: The geodesic distance is approximated as
the sum of edge weights along the shortest path between two nodes (computed using Dijkstra’s
algorithm, for example). In this Step we obtain a similarity matrix.

4. Computing lower-dimensional embedding: Low-dimensional embedding is then achieved the
same way as in MDS (see Step 3 onward in Subsection 3.2.2).

3.2.4 T-distributed Stochastic Neighbor Embedding (t-SNE)
Drawing visualisations, we are often interested in drawing only objects that are similar. We are less
interested in objects that are dissimilar or far apart. The method that focuses on preserving only
local similarities is t-SNE. It is a non-linear technique used for visualising high-dimensional data and
data exploration. A t-SNE algorithm tries to optimise the two similarity measures between pairs of
instances in the high and low-dimensional space using a cost function. Because it uses a gradient descent
optimisation that is initiated randomly, the t-SNE is a non-deterministic algorithm, however randomness
can be eliminated using manually initialisation such as output from the PCA.

The algorithm includes following steps [Maaten and Hinton 2008]:

1. Creating a probability distribution that describes relationships between neighbouring points. For
each point in the high-dimensional space, a Gaussian distribution is centered on that point and the
probability density of all points under that Gaussian distribution is measured. This is done pairwise
and similar data points will have more similar values under this Gaussian circle.

2. Recreating a low-dimensional space that best expresses the probability distribution from Step 1.
This Step is similar to the previous, except is uses a Student t-distribution with one degree of freedom
that is also called the Cauchy distribution. Another set of probabilities is obtained, but this time for
the low-dimensional space.

8 3 Similarity Map and Algorithms

3. Optimising the low-dimensional distribution in the way the two map structures are as similar
as possible. The difference between probability distributions of the two-dimensional spaces is
measured using Kullback-Liebler (KL) divergence. The optimisation is done using gradient descent
minimising the KL cost function.

Chapter 4

Expanding LibreOffice Calc with Similarity
Map Add-in

In this Chapter, the most important parts of the developed Add-in are described.

4.1 Required Add-in structure
Each LibreOffice Add-in must follow a specific structure in order to be successfully installed. Typically,
the structure includes following files:

• description: a folder, containing files with Add-in description;

• META-INF: a folder, containing the manifest.xml file that specifies the location of the source code
and Addons.xcu file;

• images: a folder that contains Add-in graphics;

• src: a folder with all Add-in source code;

• Addons.xcu: a file, specifying toolbar items and menu entries;

• description.xml: a file that provides paths to license and description;

• LICENSE.txt.
The required files are manifest.xml and description.xml.
The OXT is OpenOffice extension file used to represent extensions for the Office suite. The OXT file

format follows the ZIP specification, therefore the final package of Add-in is made by zipping the root
folder and renaming the file extension to .oxt.

4.1.1 Programming Languages
LibreOffice extension can be developed using several programming languages, such as C++, Python,
Java, Javascript and LibreOffice Basic. It is possible to contribute extensions on the official web page for
Libre Office extensions [LibreOffice Extensions 2019]. Most of extensions there are under Attribution-
ShareAlike 3.0 Unported (CC BY-SA 3.0) license.

4.1.2 Extension description
For a valid extension only one file is needed, namely description.xml. A minimal version of it is shown
in Listing 4.1.
As the minimal version provides little information, it can be extended using properties as follows:

9

10 4 Expanding LibreOffice Calc with Similarity Map Add-in

<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://openoffice.org/extensions/description 2006"
xmlns:d="http://openoffice.org/extensions/description 2006"
xmlns:l="http://libreoffice.org/extensions/description/2011"
xmlns:xlink="http://www.w3.org/1999/xlink">

</description>

Listing 4.1: Minimal content of the description.xml file.

• Version: the current version of extension;

• Identifier: the unique name for the LibreOffice Extension Manager;

• Platform: a list of supported operating systems;

• Display Name: the Add-in name;

• Publisher: a list of authors.
The final file description.xml of Similarity Map Add-in is shown in Listing 4.2.

4.1.3 Manifest
The manifest.xml file must be in the META-INF directory. Absence of this file prevents Extension
Manager to remove the extension properly. It also contains full paths to the source code and the .xcu files
defining the menu buttons. The manifest of Similarity Map Add-in is seen in Listing 4.3.

4.1.4 Menu and Toolbar
Button can be created using a .xcu file, that is basically an XML file. Buttons are defined within the root
node AddonUI. Custom button can be defined as shown in Listing 4.4.

One of the most important parameters is the context value. In this example it defines operations that
will be performed over currently opened spreadsheet document. The URL value defines a service that
gets called when user invokes the button. In our case, the service is defined in SIMMAP.py file.

The base class is located in SIMMAP.py file and when someone clicks on the button, the function
execute gets called. In the constructor, forms are created and click listeners are registered to receive user
actions.

The file CalcWindowsState.xcu [4.6] creates a toolbar button and then connects it to the Addons.xcu
file that in turn executes the service.

4.2 Connecting to LibreOffice
All of the communication between LibreOffice and Python is done using the UNO model. It offers
two approaches. The first is interactive that allows developer to connect to the LibreOffice through an
interactive Python shell. The other is intended for developed Add-ins, where the context is retrieved from
the LibreOffice Extension Manager.

To connect using an interactive approach, first a LibreOffice server must be started by navigating to
the LibreOffice installation folder and then to program subfolder. Next, a user can connect to this server
using an interactive Python shell. This is performed by two shell commands as listed in 4.7

In the shell, we first need to import required packages and then establish a connection to the service.
Once connected, a service manager is opened, obtaining the program context named desktop that handles

Connecting to LibreOffice 11

<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://openoffice.org/extensions/description/2006"
xmlns:d="http://openoffice.org/extensions/description/2006"
xmlns:l="http://libreoffice.org/extensions/description/2011"
xmlns:xlink="http://www.w3.org/1999/xlink">
<version value="1.0.0"/>
<identifier value="javahelps.simmap"/>
<icon>
<default xlink:href="images/logo.png" />

</icon>
<display-name>
<name>Similarity Map</name>
<name lang="en">Similarity Map</name>

</display-name>
<extension-description>
<src xlink:href="pkg-desc/desc_en.txt"/>
<src xlink:href="pkg-desc/desc_en.txt" lang="en" />

</extension-description>
<dependencies>
<l:LibreOffice-minimal-version value="4.0"
d:name="LibreOffice.org or Open Office 4.0"/>

</dependencies>
<registration>
<simple-license accept-by="admin">
<license-text xlink:href="LICENSE.txt" />
<license-text xlink:href="LICENSE.txt" lang="en-US" />

</simple-license>
</registration>

</description>

Listing 4.2: The description.xml file of the Similarity Map Add-In.

<manifest:manifest xmlns:manifest="http://openoffice.org/2001/manifest">
<manifest:file-entry manifest:full-path="Addons.xcu"
manifest:media-type="application/vnd.sun.star.configuration-data"/>

<manifest:file-entry manifest:full-path="Office/UI/CalcWindowState.xcu"
manifest:media-type="application/vnd.sun.star.configuration-data"/>

<manifest:file-entry manifest:full-path="SIMMAP.py"
manifest:media-type="application/vnd.sun.star.uno-component;type=Python"/>

</manifest:manifest>

Listing 4.3: The manifest file of Similarity Map Add-in.

12 4 Expanding LibreOffice Calc with Similarity Map Add-in

<node oor:name="AddonMenu">
<node oor:name="SimMap.AddonMenu.M1" oor:op="replace">

<prop oor:name="Context" oor:type="xs:string">
<value>com.sun.star.sheet.SpreadsheetDocument</value>

</prop>
<prop oor:name="URL" oor:type="xs:string">

<value>service:vnd.simmap?simmap</value>
</prop>
<prop oor:name="Title" oor:type="xs:string">

<value>Similarity Map</value>
</prop>
<prop oor:name="Target" oor:type="xs:string">

<value>_self</value>
</prop>

</node>
</node>

Listing 4.4: XML definition for menu action in Similarity Map Add-in.

g_ImplementationHelper = unohelper.ImplementationHelper()
g_ImplementationHelper.addImplementation(SIMMAP, 'vnd.simmap', ('com.sun.star.task.Job',),)

Listing 4.5: An example of a UNO service.

<node oor:name="UIElements">
<node oor:name="States">

<node oor:name="private:resource/toolbar/addon_SimMap.OfficeToolBar.T1"
oor:op="replace">

<prop oor:name="UIName" oor:type="xs:string">
<value xml:lang="en">Similarity Map</value>

</prop>
</node>

</node>
</node>

Listing 4.6: Definition of the toolbar button.

./soffice --calc \
--accept="socket,host=localhost,port=2002;urp;StarOffice.ServiceManager"

./python

Listing 4.7: Starting LibreOffice server and interactive Python shell.

User Interface 13

import socket
import uno

localContext = uno.getComponentContext()
resolver = localContext.ServiceManager.createInstanceWithContext(

'com.sun.star.bridge.UnoUrlResolver', localContext)

ctx = resolver.resolve(
'uno:socket,host=localhost,port=2002;urp;StarOffice.ComponentContext')

smgr = ctx.ServiceManager

desktop = smgr.createInstanceWithContext('com.sun.star.frame.Desktop', ctx)

access the current calc document
document = desktop.getCurrentComponent()

Listing 4.8: Retrieving document context in Python from shell.

document = XSCRIPTCONTEXT.getCurrentComponent()

Listing 4.9: Retrieving document context in Python from Add-in.

work with the documents. Finally with the getCurrentComponent() method the active document is
retrieved.

With the installed Add-in, the LibreOffice script manager provides a global XSCRIPTCONTEXT variable
that already holds a reference to the desktop context. Therefore only the last step is required as follows:

4.3 User Interface
The user interface for the add-in is aimed to be extremely simple, but functional. After selecting the data
to work with, the user can click the add-in button in "Tools" section and will see a dialog window with
different algorithms for building the similarity map - as in 4.1. Selecting the appropriate method and
parameters for it, the user invokes the add-in to create a new sheet with the calculated coordinates for
the similarity map plotting. A plot is also created automatically, showing the data samples scattered on
a plane according to their similarities. The user is able then to export the plot using the built-in export
functions of LibreOffice Calc with the desired extension.

4.4 Head Detection
The selected data might or might not contain the header column to indicate attributes names. Two
conditions were therefore introduced:

• Whenever top left cell is empty, it is assumed that the name column does not contain header name.
An example can be seen in Fig. 4.2.

• Data types between first two rows are matched. If in any of the rows fails to match, it is assumed
that this is due to string data type because of the header name and numerical part differ.

If any of the conditions match, first row is assumed as a header row and removed before running any
of the projection algorithms.

14 4 Expanding LibreOffice Calc with Similarity Map Add-in

Figure 4.1: Dialog window to select a similarity map algorithm.

Figure 4.2: An example of a data table with empty top left cell.

4.5 Algorithms
All dimensionality reduction algorithms were implemented using the scikit-learn [Pedregosa et al. 2011]
Python library, a widely used Machine Learning library that supports many supervised and unsupervised
algorithms. It introduces a common interface for all of the implemented methods resulting in consistent
usage. The example of PCA is as follows in 4.10.

The Similarity Map Add-in implements following methods from the scikit-learn library: PCA, MDS,
Isomap and t-SNE; each previously described in detail in Chapter 3. In the following subsections,
implementation details of the algorithms are described.

PCA
Scikit-learn implements three different algorithms for PCA decomposition, based on the size of the
dataset for computational reasons. By default, for datasets smaller that 500 × 500, a Singular Value
Decomposition (SVD) is performed and only the requested components are kept, the rest are truncated.
If the dataset is larger, a randomised algorithm by Halko et al. [Halko et al. 2011] is used to speed up the
computation. The algorithm was limited only to SVD solver, as it is not expected to run projections with

Creating plots 15

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_r = pca.fit_transform(X)

Listing 4.10: PCA using scikit-learn.

more than 500 attributes from within LibreOffice Calc and to ensure deterministic output of the method.

MDS
In the official documentation it is not stated what implementation is used and there are two main options
available - metric and nonmetric. The Add-in was limited to metric option using the Euclidean distance,
creating an MDS implementation known as absolute MDS [Torgerson 1952]. The algorithm uses random
initial placement, making it non-deterministic.

Isomap
The Isomap algorithm serves as a preprocessing step for the MDS algorithm described in section 3.2.2.
The parameters are left default as described in the documentation [Scikit-learn Isomap 2019] they are
usually most suited default parameters. The most important, number of Neighbours used for graph
generation, is set to 5. The shortest path calculation is performed either by Dijkstra’s algorithm or by
Floyd-Warshall algorithm, determined automatically based on the data. To guarantee consistent results,
the Add-in manually sets Dijkstra’s that also provides faster execution.

t-SNE
Scikit-learn implements the original version of t-SNE algorithm by Maaten et al. [LJPvd and Hinton
2008]. The original algorithm is expanded by using Barnes-Hut [Barnes and Hut 1986] gradient descent
calculation as proposed in 2013 [Van Der Maaten 2013] by the original author of t-SNE algorithm. The
improvement decreases computation time from O(n2) to O(nlog(n)). The parameters are left by default
values as described in the official documentation [Scikit-learn t-SNE 2019].

Initialisation is performed as recommended, using PCA to reduce dimensionality of the data and speed
up the computation. Another positive side effect of such initialisation is that it removes the random
initialisation component, making the algorithm deterministic.

4.6 Creating plots
LibreOffice Calc has various built-in plots for visualising the data. The task was to select the most
suitable one and invoke the plot creation using PyUNO library. Scatter plot with coordinates for each
point representing a data sample serves the task well enough, with X- and Y-axis removed for clarity, as
the coordinates of the points themselves are not carrying information of any importance to the user.

According to the object system of Calc, the plot is created within a shape, namely, a Rectangle in this
case - there are various Shape classes implemented in the object library. The size of the shape can be set
here also.

Afterwards the data range has to be set for the plot to draw the information from. As the dataset
may vary, the data range has to be set dynamically, so the shape of the data frame plotted is passed as a
parameter to the function. The Chart object then can be created using this range, for example, as shown
in 4.12.

Where XYDiagram - is a scatter plot object. A chart is initially created as an empty object, and then
the exact diagram type is set. Afterwards some adjustments are necessary: turn off the line connecting

16 4 Expanding LibreOffice Calc with Similarity Map Add-in

from com.sun.star.awt import Rectangle
rect = Rectangle()
rect.Width, rect.Height, rect.X, rect.Y = 22000, 12000, 1000, 9200

Listing 4.11: Shape creation in PyUNO.

from com.sun.star.table import CellRangeAddress
range_address = []
range_address.append(CellRangeAddress())

range_address[0].Sheet = sheet.RangeAddress.Sheet
range_address[0].StartColumn = 1
range_address[0].EndColumn = 3
range_address[0].StartRow = 0
range_address[0].EndRow = shape[0] + 1

charts.addNewByName("SimilarityMap", rect, tuple(range_address), False, False)
chart = charts.getByName("SimilarityMap").getEmbeddedObject()
chart.createInstance("com.sun.star.chart.XYDiagram")

Listing 4.12: Data Range setting and chart creation.

the points by default, hide axes, legend and grids, add numbering to the samples for clarity - for example
see 4.13. Some properties are belonging to the Chart object, the others are properties of the Diagram,
what makes the whole construction a bit confusing for a programmer not familiar with the structure.

from com.sun.star.chart.ChartDataCaption import VALUE
from com.sun.star.chart.ChartDataCaption import TEXT

chart.HasMainTitle = True
chart.HasLegend = False
chart.Title.String = "Similarity Map"
chart.Title.CharHeight = 24
chart.HasSubTitle = False
chart.HasLegend = False

diagram = chart.getDiagram()
diagram.Lines = False
diagram.HasYAxis = False
diagram.HasXAxis = False
diagram.DataCaption = VALUE
diagram.DataCaption = TEXT

Listing 4.13: Adjusting the plot to the needs of the task.

The biggest issue with this part of the task is that the documentation for PyUNO is very scarce and
there are almost no examples of some existing code like this. At this point code writing becomes mostly
a guessing game with trying out all the different fields and properties trying to achieve the desired result.

Chapter 5

User guide

This Chapter provides the instructions on how to install and use developed Add-in for the Similarity Map
visualisation technique.

5.1 Installation
LibreOfficeCalc comes in a suitewith LibreOffice and its own core Python version, that includesUniversal
Network Objects (UNO) [UNO 2019], a component model used for developing extensions, namely for
communication between processes and/or languages that LibreOffice uses.
Due to the shipped Python core version, some of the required libraries are missing, including PIP [Py-

thon pip 2019], a package manager for installing third party Python libraries. The easiest way to obtain
PIP is to download the get-pip.py script from the Python Packaging Authority 1. To install it, first navigate
to the LibreOffice installation folder and then into subfolder named program. The get-pip.py script should
then be run exactly from this folder (program) by following Python command:

./python get-pip.py

Listing 5.1: PIP installation.

Finally, the remaining required packages can be installed by using the following command:
With this, all the prerequisites for running the Add-in should be installed. It can be tested by starting

the LibreOffice’s Python installation and running and importing one of the installed modules, see 5.3.
In the latest version as of writing (6.2.4), there appears to be a problem with the library multiprocessing

that is pre-installed. Pool handling is missing and is required for Isomap nad t-SNE algorithms. It can
be resolved by copying file pool.py from a full installation directory into the program/python-core-
3.5.7/lib/multiprocessing. For convince, this file is provided in the documents folder that came with the
report.

1https://bootstrap.pypa.io/get-pip.py

./python -m pip install setuptools pandas numpy sklearn scipy --user
>>> from sklearn.decomposition import PCA

Listing 5.2: A python command to install required Python dependencies.

17

18 5 User guide

./python
>>> from sklearn.manifold import TSNE, MDS

Listing 5.3: Test of the installed Python dependencies.

LibreOffice also provides a way to package dependencies with Add-in, but this option is only available
for dependencies written in pure Python code. Those containing native code must be installed separately
due to differences in operating systems and platforms.

After the dependencies are installed, the Add-in can be installed by running the OXT file. It is a
registered extension so the LibreOffice will automatically open it, showing a license agreement. After
accepting it, the Add-in will be installed and the restart is needed to make it available for use.

5.2 Step-by-step guide
The action algorithm is the following:

1. Upload the dataset in the Calc spreadsheet and select all the cells with the data as shown in 5.1. The
first selected column should represent record names, while the others attributes.

2. Select the "Similarity Map" tool in the "Tools" dropdown menu on top - see 5.2

3. Pressing the button will invoke a dialog window with all algorithm options and parameters for it - as
shown in 5.3. The user can adjust them to their needs and press "Create" to calculate the similarities.

4. As the result the user will see a new sheet with the calculated data in it and the scatter plot representing
the similarity map - see 5.4. If needed, it is also possible to export the chart created using ordinary
built-in export functions of LibreOffice Calc by right clicking on the plot and selecting "Export
Image".

Figure 5.1: Data selection to create a similarity map.

Step-by-step guide 19

Figure 5.2: "Similarity Map" tool button.

Figure 5.3: Dialog window with algorithm options.

20 5 User guide

Figure 5.4: Similarity map plotting result.

Chapter 6

Conclusion

In this project work, a Similarity Map Add-in for LibreOffice Calc was developed. The LibreOffice Calc
and several dimensionality reduction algorithms were presented, along with the detailed description of
Add-in implementation and instructions on how to install and use it.

The Similarity Map Add-in was successfully developed, however, there are still many possibilities for
improvement. The greatest weakness comes with the complexity of the installation as libraries must be
manually installed. LibreOffice ships only with Python core version that lacks the required libraries used
in this Add-in. Complex algorithms and the majority of the speed critical code are written in native code.
This is compiled to a platform dependant binary, that can not be shipped together with a cross platform
Add-in, introducing the difficult installation.

The user interface is also not user friendly and intuitive as desired due to a severe lack of documentation
and examples. Checkboxes might be completely removed with parameters hidden based on the selected
algorithms and with input controls more appropriate such as number boxes that contain input validation.
Most of the existing functionality also allow to use predefined named tables, which SimilarityMap Add-In
does not.

Overall, the developed cross-platform Add-in provides an easy way to create a Similarity Map, a
visualisation that greatly helps explaining complex datasets or to obtain insights from the data such as
detection of clusters and outliers without the need to code.

21

22 6 Conclusion

Bibliography

Add-in Functions [2019]. https://help.libreoffice.org/Calc/Add-in_Functions,_List_of_Analysis_
Functions_Part_Two (cited on page 4).

Barnes, Josh and Piet Hut [1986].A hierarchical O (N log N) force-calculation algorithm. nature 324.6096
(1986), page 446 (cited on page 15).

Buja, Andreas, Deborah F Swayne, Michael L Littman, Nathaniel Dean, Heike Hofmann, and Lisha Chen
[2008]. Data visualization with multidimensional scaling. Journal of Computational and Graphical
Statistics 17.2 (2008), pages 444–472 (cited on page 6).

Calc Filters [2019]. https://help.libreoffice.org/Common/About_Import_and_Export_Filters (cited on
page 4).

Dimension Reduction - IsoMap [2019]. https://blog.paperspace.com/dimension-reduction-with-isomap/
(cited on pages 6–7).

Halko, Nathan, Per-Gunnar Martinsson, and Joel A Tropp [2011]. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review 53.2
(2011), pages 217–288 (cited on page 14).

Holland, Steven M. [no date]. Principal components analysis (PCA). Department of Geology, University
of Georgia, Athens, GA (), pages 30602–2501 (cited on page 5).

LibreOffice [2019]. https://www.libreoffice.org/discover/libreoffice/ (cited on page 3).

LibreOffice Calc [2019]. https://www.libreoffice.org/discover/calc/ (cited on page 3).

LibreOffice Extensions [2019]. https://extensions.libreoffice.org (cited on page 9).

LibreOffice Help [2019]. https://libreofficehelp.com/change-libreoffice-default-look-and-feel/
(cited on page 3).

LJPvd, Maaten and GE Hinton [2008]. Visualizing high-dimensional data using t-SNE. Journal of Ma-
chine Learning Research 9 (2008), pages 2579–605 (cited on page 15).

Maaten, Laurens van der and Geoffrey Hinton [2008]. Visualizing data using t-SNE. Journal of machine
learning research 9.Nov (2008), pages 2579–2605 (cited on page 7).

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay [2011]. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research
12 (2011), pages 2825–2830 (cited on page 14).

Python pip [2019]. https://pypi.org/project/pip/ (cited on page 17).

Scikit-learn Isomap [2019]. https://scikit-learn.org/stable/modules/generated/sklearn.manifold.
Isomap.html (cited on page 15).

23

https://help.libreoffice.org/Calc/Add-in_Functions,_List_of_Analysis_Functions_Part_Two
https://help.libreoffice.org/Calc/Add-in_Functions,_List_of_Analysis_Functions_Part_Two
https://help.libreoffice.org/Common/About_Import_and_Export_Filters
https://blog.paperspace.com/dimension-reduction-with-isomap/
https://www.libreoffice.org/discover/libreoffice/
https://www.libreoffice.org/discover/calc/
https://extensions.libreoffice.org
https://libreofficehelp.com/change-libreoffice-default-look-and-feel/
https://pypi.org/project/pip/
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html

24 Bibliography

Scikit-learn t-SNE [2019]. https://scikit-learn.org/stable/modules/generated/sklearn.manifold.
TSNE.html (cited on page 15).

Tenenbaum, Joshua B, Vin De Silva, and John C Langford [2000]. A global geometric framework for
nonlinear dimensionality reduction. science 290.5500 (2000), pages 2319–2323 (cited on page 7).

Torgerson,Warren S [1952].Multidimensional scaling: I. Theory andmethod. Psychometrika 17.4 (1952),
pages 401–419 (cited on page 15).

UNO [2019]. http://www.openoffice.org/udk/ (cited on page 17).

Van Der Maaten, Laurens [2013]. Barnes-hut-sne. arXiv preprint arXiv:1301.3342 (2013) (cited on
page 15).

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
http://www.openoffice.org/udk/

	Contents
	List of Figures
	1 Introduction
	2 LibreOffice Calc
	2.1 User interface
	2.2 Features

	3 Similarity Map and Algorithms
	3.1 Similarity Map
	3.2 Implemented algorithms
	3.2.1 Principal Component Analysis (PCA)
	3.2.2 Multidimensional Scaling (MDS)
	3.2.3 Isomap
	3.2.4 T-distributed Stochastic Neighbor Embedding (t-SNE)

	4 Expanding LibreOffice Calc with Similarity Map Add-in
	4.1 Required Add-in structure
	4.1.1 Programming Languages
	4.1.2 Extension description
	4.1.3 Manifest
	4.1.4 Menu and Toolbar

	4.2 Connecting to LibreOffice
	4.3 User Interface
	4.4 Head Detection
	4.5 Algorithms
	4.6 Creating plots

	5 User guide
	5.1 Installation
	5.2 Step-by-step guide

	6 Conclusion
	Bibliography

