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Abstract

This project report describes the work carried out to enhance and improve the prototype card sort-
ing analysis tool CSA. First, a brief introduction to the method of card sorting is given. Then, all
functionalities of the improved CSA prototype are described and explained in detail. The main
features of the improved CSA prototype include absolute and normalised versions of the similarity
and distance matrices, a coloured version of the co-occurrence matrix, similarity maps created with
3 different algorithms, a dendrogram for visualisation of the results in a tree format, and the rep-
resentation of the result-groups in tabular format together with a suggestion of the most frequently
assigned group labels.
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Chapter 1

Introduction

The Card Sorting Analysis Tool is based on the previous work:
"Card Sorting Analysis with Spreadsheet and R" by Ines Terzic, Lukas Krisper, Stefan Painhapp, and Manuel
Papst from 2016.
An Introduction and Overview about Card Sorting can be found in their paper. The main focus of our work was
to fix some minor bugs in the already existing software as well as implementing some new features.
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Chapter 2

About the Card Sorting Analysis Applica-
tion CSA

The Card Sorting Analysis Application (CSA) is based on previous work from 2016. It is a Shiny web
application written in R. For easy access via browser it is hosted on shinyapps.io under the following url:
https://infovis-tug.shinyapps.io/csa18/

This work is licensed under the MIT license.
The CSA is divided into multiple Tabs:

• Readme - Start page, contains information/license text

• Data - First page, here the csv data is uploaded

• Similarity - Contains the (normalised) similarity matrix

• Distance - Contains the (normalised) distance matrix

• Histogram - Improved Histogram implementation

• Co-Occurrence - Color coded Co-Occurrence matrix

• Similarity Map - Different algorithms (t-SNE, MDS, FDP)

• Dendrogram - Different clustering algorithms with graphical output

• Result - Grouped results, with meaningful group name calculation

In the following chapters the functionality of the CSA card sorting analysis application are described in
more detail. Figure 2.1 shows a screenshot of current implementation of the Readme tab.

3

https://infovis-tug.shinyapps.io/csa18/
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Figure 2.1: CSA Readme Tab Information/License



Chapter 3

Data Input

The tab "Data" of the CSA application is the first tab which needs to be entered to be able to use the CSA tool
in a meaningful way. First of all the user has to define which character (comma, semicolon etc.) is being used
as separator in the input file, which should be a CSV. The separator is used for reading the input file as well
as writing output later on, e.g. when a matrix is being downloaded. Right after that there is a button where
the user has to select which CSV should be used as input file. After the file upload finishes we also display
some information about the input file to the user: the file name, the number of rows as well as the number of
columns. Furthermore the data is immediately displayed to the screen, so that the user can check if the correct
data set was selected. Figure 3.1 shows a screenshot of the Data tab of the CSA application after a file has been
successfully uploaded.
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Figure 3.1: CSA Data Tab used for data upload



Chapter 4

Similarity Matrix

The tab "Similarity" of the CSA application shows the calculated similarity matrix of the input data. The
values in the similarity matrix state how often each row-item was classified into the same category with the
corresponding column-item. The result is a lower triangular matrix, since the values are mirrored along the
main diagonal.

Furthermore it consists of a checkbox to enable the user to switch between a similarity matrix with absolute
and one with normalised values. Additionally we provide a download-button for saving the matrix as a CSV,
where the given value from the data tab is used as separator value. Figure 4.1 shows a screenshot of the
"Similarity" tab with absolute values and Figure 4.2 is the same table with normalised values.
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Figure 4.1: The tab "Similarity" of the CSA application shows the calculated similarity matrix of the input
data with absolute values.
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Figure 4.2: The tab "Similarity" of the CSA application shows the calculated similarity matrix of the input
data with normalised values.
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Chapter 5

Distance Matrix

The tab "Distance" of the CSA application shows the calculated distance matrix of the input data. The values in
the distance matrix state how often each row-item was classified into a different category than the corresponding
column-item. The result is a lower triangular matrix, since the values are mirrored along the main diagonal.

Furthermore it consists of a checkbox to enable the user to switch between a distance matrix with absolute
and one with normalised values. Additionally we provide a download-button for saving the matrix as a CSV,
where the given value from the data tab is used as separator value. Figure 5.1 shows a screenshot of the
"Distance" tab with absolute values and Figure 5.2 is the same table with normalised values.
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Figure 5.1: The tab "Distance" of the CSA application shows the calculated distance matrix of the input
data with absolute values.
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Figure 5.2: The tab "Distance" of the CSA application shows the calculated distance matrix of the input
data with normalised values.
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Chapter 6

Distance Histogram

The tab "Histogram" of the CSA application shows a histogram of the content of the distance matrix, and
provides two download-buttons for saving the histogram graphic as png-file and as svg-file respectively. Fig-
ure 6.1 shows a screenshot of the tab "Histogram" of the CSA application.

The histogram is plotted using the function hist() from the base R graphics package. A detailed description
of the capabilities and usage of hist() can be found in the R Documentation [Team 2015a]. The code snippet in
Listing 6.1 shows how the hist() function is utilised in the csa application for plotting the histogram.

The breakpoints between the histogram cells are set in such a way that each histogram cell includes one
value from the range of possible values in the distance matrix. Since the values in the distance matrix show
for each pair of cards the number of sorts which had assigned these two cards to different groups, the lowest
possible value in the distance matrix is zero, and the highest possible value in the distance matrix is equal to the
number of sorts. The heights of the bars of the histogram show for each of the values how often that specific
value appeared in the distance matrix. The maximum value shown on the y-axis equals the total number of cells
in the distance matrix, as this is the maximum possible count.

Such a histogram graphic is useful to get a quick overview regarding the variety of the sorting results. If
there are high bars at the edges of the histogram and almost no counts in middle bins of the histogram, this
is an indication for a high degree of congruence among the results of the single sorts. Such a high degree of
congruence among the results of the single sorts facilitates the final grouping. For example, from the histogram
shown in Figure 6.1 it can be seen that 4768 of the 10000 possible card-pairs were split and sorted into different
groups by all of the 38 test-users. Thus, for about 47 percent of the card pairs it seems quite clear that the
elements of that card-pairs should not be together in a group in the final grouping-version. Furthermore, from
the histogram in Figure 6.1 it can also be seen that 352 card-pairs were split into different groups by none of
the test-users. Thus it seems quite clear that the elements of these 352 card pairs should also be sorted into the
same group in the final grouping-version.
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Figure 6.1: The tab "Histogram" of the CSA application shows a histogram of the content of the distance
matrix, and provides the possibility to download this graphic as png-file or svg-file.
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1 plotHisto = function() {
2 # draw the histogram of the distance matrix
3 hst <- hist(csdistance(), col = "gray",
4 # add a diagram title and axis labels
5 main = "Distance Histogram",
6 xlab = "Values in Distance Matrix",
7 ylab = "Counts per Value",
8 # the max value on the y axis equals the size of the distance matrix
9 ylim = c(0, (ncol(csdistance()) * ncol(csdistance()))),

10 # display the labels of the data
11 labels = TRUE,
12 # set number of histogram -bins to range of distance matrix values
13 breaks = c(0:nrOfLines()),
14 # upper and lower limits of the range are included
15 right = TRUE, include.lowest = TRUE,
16 # do not display the default axes
17 axes = FALSE
18 )
19 # add custom x-axis
20 axis(1, c(0:nrOfLines()))
21 # add custom y-axis
22 axis(2, at = c(0,(ncol(csdistance()) * ncol(csdistance()))/2,
23 (ncol(csdistance()) * ncol(csdistance())))
24 )
25 # draw a box around the graphic
26 box()
27 return(hst)
28 }

Listing 6.1: The code for plotting the histogram in the CSA application utilises the hist() function from the
base R graphics package and adds custom axes and a box.
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Chapter 7

Co-Occurrence Matrix

The tab "Co-Occurrence Matrix" of the CSA application shows the Co-Occurrence Matrix. All the values are
given in percent and are color coded based on their range from white to dark blue. New added functionality
includes:

• Download Button (csv)

• Color coded matrix (via JavaScript)

• SVG Legend explaining the values/color ranges

The table is rendered as usual, but in the background an included JavaScript file is listening on the built-in
shiny js events, and triggering the color coding functions after the Co-Occurrence Matrix table is drawn.
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1 $(document).on("shiny:value", function(e) {
2 if (e.name == "coocurrenceMatrix") { //the id of the output element
3 e.preventDefault();
4 $("#coocurrenceMatrix")
5 .removeClass("shiny-output-error") // get rid of potential previous error styling
6 .html(e.value); // render the output from the server
7 colorCode();
8 }
9 });

Listing 7.1: JavaScript code for listening on built-in shiny js events to color code the Co-Occurrence
Matrix.

Figure 7.1: SVG Legend for Co-Occurrence Matrix

Figure 7.2: The tab "Co-Occurrence Matrix" of the CSA application shows the Co-Occurrence Matrix,
and provides the possibility to download this data as csv-file.



Chapter 8

Similarity Maps

Similarity maps are a visualisation technique for high-dimensional data, aiming at making similarities between
elements visible. The aim is to achieve similarity maps, where "similar" elements are displayed close together
and groups can easily be distinguished visually. The similarity map provided in the CSA application is a
projection of the high-dimensional similarity matrix into the two-dimensional space, in order to provide a
visual clue for grouping of the elements.

As depicted in Figure 8.1, within the tab "Similarity Map" of the CSA application the user can choose
among 3 different algorithms for the creation of a similarity map: MDS (Multi-Dimensional Scaling), FDP
(Force-Directed Placement), and t-SNE (t-Distributed Stochastic Neighbor Embedding). By default a similarity
map created by the t-SNE algorithm is displayed. On top of the tab two download-buttons are available to save
the similarity map graphic as png-file or svg-file respectively.

In the following sections the similarity maps based on the MDS, FDP, and t-SNE algorithms are described
in more detail.
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Figure 8.1: The tab "Similarity Map" shows a similarity map based on the user’s algorithm-choice, and
provides the possibility to download this graphic as png-file or svg-file.

8.1 Similarity Map with t-SNE

t-SNE is an abbreviation and it stands for t-Distributed Stochastic Neighbor Embedding [Jaju 2017]. t-SNE
is a non-linear algorithm used for dimension reduction of high-dimensional data. It generally maps the multi-
dimensional data into a space which is observable for humans.

Since the t-SNE algorithm is kind of a black box, it is not feasible to get insights on the real algorithm.
Furthermore the algorithm doesn’t provide the same output data on each successive run, even when the user
uses the same data over and over again. Therefore the algorithm is better to be used for exploratory data analysis
or as input for another classifier. The big advantage of the t-SNE algorithm is that it is capable of retaining the
local and global structure of the data at the same time, whereas many other algorithms cannot do so.

The code snippet in Listing 8.1 shows how easy it is to use t-SNE with the help of the Rtsne function for
plotting the similarity matrix map.

Figure 8.2 shows an example of such a similarity map created by the CSA application with the t-SNE
algorithm. Furthermore, when the user decides to use the t-SNE algorithm for the similarity map layout, he
gets the possibility to adapt some parameters, the number of maximum iterations as well as the perplexity.
Figure 8.3 shows the UI of the adaptable t-SNE parameters.
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1 plotSimilarityMap = function() {
2 if(input$smType == "t-SNE") {
3 #max iterations
4 tsneiter <- input$tsneiter
5 #perplexity
6 tsneperp <- input$tsneperp
7 #actual data
8 tsne_mat <- unique(csdistance()/ nrOfLines())
9 rtsne <- Rtsne(tsne_mat, max_iter = tsneiter, perplexity = tsneperp)

10 #Using BarnesHutSNE
11 sim_plt <- plot(rtsne$Y, t=’n’, main=’Similarity Map (t-SNE)’, xlab="", ylab="",

axes = FALSE, frame = TRUE)
12 text(rtsne$Y, labels=colnames(mat()), cex=0.8, font = 1, family = "sans")
13 }
14 return(sim_plt)
15 }

Listing 8.1: The code for plotting the similarity map with t-SNE algorithm in the CSA application.

Figure 8.2: In the CSA application the similarity map graphic with t-SNE algorithm is created using the
Rtsne() function.
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Figure 8.3: Parameters maximum iterations and perplexity which are used for the t-SNE Algorithm.

8.2 Similarity Map with MDS

As described in [Joseph B. Kruskal 1978], classical multidimensional scaling (MDS) is a method to project
high-dimensional data into a lower-dimensional space in order to visualise the "hidden structure" of the data.
The MDS algorithms use proximities among elements as input and provide a geometric representation of these
elements as output, whereby the geometric representation reflects the proximities of the elements.

In the CSA application a two-dimensional representation of the proximities of the cards is created by util-
ising the cmdscale() function, which is included in the base R stats package. According to Team [2015b] the
cmdscale() function applies classical multidimensional scaling (MDS), also known as principal coordinates
analysis (PCoA). The functin takes a distance matrix (that is a set of dissimilarities) and returns a set of points
where the distances between the points are similar to the dissimilarities of the elements represented by the
points. A detailed specification of the cmdscale() function can be found in [Team 2015b].

The code snippet in Listing 8.2 shows how the cmdscale() function is utilised in the CSA application for
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1 plotSimilarityMap = function() {
2 #in case the user’s chosen algorithm is MDS
3 if(input$smType == "MDS") {
4 #apply the MDS algorithm
5 fit <- cmdscale(dist1(), eig=TRUE, k=2)
6 #extract the coordinates of the points in the 2D-Space
7 x <- fit$points[,1]
8 y <- fit$points[,2]
9 #create a scatterplot of the points

10 sim_plt <- plot(x, y,
11 #display no axes and no axes-labels
12 xlab="", ylab="", axes = FALSE,
13 #display a frame and a diagram-title
14 frame = TRUE,
15 main="Similarity Map (MDS)",
16 #do not display the points
17 type="n")
18 #plot the card-names at the position of the scatterplot points
19 text(x, y, labels = colnames(mat()), cex=0.8, font = 1, family = "sans")
20 }
21 return(sim_plt)
22 }

Listing 8.2: The code for plotting the similarity map with MDS algorithm in the CSA application utilises
the cmdscale() function from the base R stats package.

plotting the similarity matrix.

Figure 8.4 shows an example of such a similarity map created by the CSA application with the MDS
algorithm.
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Figure 8.4: In the CSA application the similarity map graphic with MDS algorithm is created using the
cmdscale() function, which comes with the default distribution of R.

8.3 Similarity Map with FDP

As described in Hu [2006] force-directed algorithms place the vertices of a graph according to a model of phys-
ical systems with forces acting between them, whereby the algorithm tries to minimise the energy of the system.
There have been a lot of different force-directed algorithms developed. A widely used force-directed algorithm
for drawing network graphs is the Fruchterman-Reingold algorithm. As stated by Fruchterman and Reingold in
Thomas M. J. Fruchterman [1991], their design goal was to create an algorithm that keeps nearby vertices close
together but not too close, whereby the algorithm should work well without the user having to sophisticatedly
adjust parameters. For a comprehensive description of this algoritm refer to [Thomas M. J. Fruchterman 1991].

In the CSA application the plot.igraph() function from the R package igraph is used to create the similarity
map graphic with force-directed placement (FDP) of the elements. A detailed specification of the plot.igraph()
function is available on the R igraph manual pages [igraph Core Team 2015]. The plot.igraph() function
provides several layout options, one of which is a force-directed placement using the Fruchterman-Reingold
algorithm mentioned above. The code snippet in Listing 8.3 shows how the plot.igraph() function is utilised in
the csa application for plotting the similarity map with force-directed placement.

Figure 8.5 shows an example of such a similarity map with force-directed placement created by the CSA
application.
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1
2 plotSimilarityMap = function() {
3 #in case the user’s chosen algorithm is FDP
4 if (input$smType == "FDP") {
5 #calculate the normalised similarity matrix
6 simuMat <- (nrOfLines() - csdistance())/ nrOfLines()
7 rownames(simuMat) <- colnames(mat())
8 #create an undirected igraph graph from the normalised similarity matrix
9 g <- graph_from_adjacency_matrix(simuMat, mode = "undirected",

10 weighted = TRUE, diag = FALSE)
11 #Use the force-directed layout algorithm by Fruchterman and Reingold
12 lo <- layout_with_fr(g)
13 #plot the igraph
14 sim_plt <- plot.igraph(g, layout = lo, niter = 100000,
15 #do not display vertices and edges
16 vertex.shape = "none", edge.lty = "blank",
17 #display card names (i.e. rownames of similarity matrix)
18 vertex.label = rownames(simuMat),
19 vertex.label.color = "black",
20 vertex.label.cex=0.8,
21 vertex.label.font = 1,
22 vertex.label.family = "sans",
23 #plot a frame and diagram title
24 frame = TRUE, main = "Similarity Map (FDP)")
25 }
26 return(sim_plt)
27 }

Listing 8.3: The code for plotting the similarity map with FDP in the CSA application utilises the
plot.igraph() function from the R igraph package.
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Figure 8.5: In the CSA application the similarity map graphic with force-directed placement (FDP) is
created using the Fruchterman-Reingold layout option of the plot.igraph function from the R
igraph package.



Chapter 9

Dendrogram

The tab "Dendrogram" of the CSA application shows a dendrogram of the given data. A dendrogram is a tree
diagram which is used to illustrate how the data is clustered depending on its clustering method. The user
has the option to adapt the number of groups he wants to see as well as setting the wanted clustering method.
Furthermore it is possible to download the dendrogram as png or as svg.

Figure 9.1 shows a screenshot of the "Dendrogram" tab with 12 groups and the "average" method chosen
for clustering.
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Figure 9.1: The tab "Dendrogram" of the CSA application shows the dendrogram with adaptable number
of groups and different clustering method possibilities.



Chapter 10

Grouped Results

In this Tab the items are placed into groups, based on the number of groups choosen in the Dendrogram Tab.
More groups mean more specialization, less groups result in a more general split. The number of groups has to
be choosen carefully, with respect to the data set.
New functionality in this screen includes:

• Render multiple groups side by side

• Add border around group tables for better separation

• Calculation of the "best" group names

31
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Figure 10.1: The tab "Results" of the CSA application shows the grouped results, with the 3 most probable
group names.

1 countList = list() #our count dictionary , where the name of the entry is the unique key
2 for(index in 1:nrow(data)){
3 item <- paste(data[index, 1]) #get entry as String
4
5 votes <- fullData[, item]; #get column data of csv where title = our current item
6 for(v in votes){
7 vote <- paste(v)
8 #count how many people voted for which category for this item
9 if(vote %in% names(countList)){

10 countList[[ vote ]] = (countList[[ vote ]] + 1)
11 } else {
12 countList[[ vote ]] = 1
13 }
14 }
15 }
16 #get first 3 entries of sorted count list
17 numberOfCat <- 3
18 mostProbableNames <- head(sort(unlist(countList), decreasing = TRUE), numberOfCat);
19
20 #Calculate percent and format text, show x most probable group names as header with

percent values
21 totalCount <- Reduce("+", mostProbableNames)

Listing 10.1: Calculation of the 3 most probable group names, based on the counts of groups for each item.



Chapter 11

Conclusion

Compared to the previous version of the CSA software there were several fixes and adaptions made as well as
some totally new features were implemented. Starting from automatically reading and displaying the number
of lines of the input file instead of forcing the user to provide it manually, over to having the option to dis-
play normalised data ("Similarity" and "Distance" tab), making the histogram more beautiful, adding another
similarity map layout algorithm, providing the most likely group names as well as having several options to
download the displayed data.

Nevertheless there is still room for improvement. Due to the fact that Shiny is very interactive and constantly
processing, the performance of the application is not as high as one could imagine for such a relatively simple
application. Since there are no huge coloured pictures which need to be rendered interactively, some adaptions
regarding the speed of the software can be made. Another possibility would be to make the whole application
self-explaining by providing information to each tab so that the user immediately knows the background of the
algorithms/images which are being displayed.
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