
RepoVis Timeline Extension

Amel Hamidovic, Jakov Matic, Günther Kniewasser, Andreas Wöls

Graz University of Technology
A-8010 Graz, Austria

16 April 2018

Abstract

RepoVis as a software repository visualisation tool has several useful functionalities for displaying
files and their changes but maneuvering inside of it and getting information over time is quiet a
challenge. This paper gives an introduction to RepoVis and describes the concept of the timeline
extension, which addresses said issues. Furthermore the used framework to develop said timeline
extension will be discussed, as well as the implementation, the functionalities and a tutorial on how
to use RepoVis.

© Copyright 2018 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

Listings iv

1 RepoVis 1
1.1 Functions . 2

1.1.1 Highlight . 2
1.1.2 Usability Issues . 3
1.1.3 Presets . 3

1.2 New Feature: Timeline . 4

2 Timeline Concept 5
2.1 Concept Design . 5
2.2 Slider Usage . 5
2.3 Slider Functionality . 6

2.3.1 Requirements of Slider . 6
2.3.2 Zoom Feature . 6
2.3.3 Timeline Description . 6

3 Creating the Timeline 9
3.1 PixiJS . 9

3.1.1 Usage . 9
3.1.2 Setting up PixiJS . 9
3.1.3 Getting started . 9
3.1.4 Sprites and Primitives . 9
3.1.5 Stage . 10

3.2 Timeline Implementation . 10

4 Technical Details 13
4.1 Gather Data . 13
4.2 Parse Data . 14
4.3 Calculate Commits per Day . 14
4.4 Normalize Data to fit onto the Screen . 14

4.4.1 Normalize Y-Direction . 14
4.4.2 Normal Scaling vs. Logarithmic Scaling . 15
4.4.3 Normalize X-Direction . 15

4.5 Zoom . 15

Bibliography 17

i

ii

List of Figures

1.1 RepoVis: GUI . 1

1.2 RepoVis: Highlighting . 2

1.3 RepoVis: Latest Change . 2

1.4 RepoVis: Usability Issues . 3

1.5 RepoVis: Presets . 3

2.1 Timeline: Slider Cursor . 5

2.2 Timeline: Slider Background 1 . 7

2.3 Timeline: Slider Background 2 . 7

2.4 Timeline: Slider Background 3 . 7

3.1 Timeline implementation: Bars . 10

4.1 JSON format . 14

4.2 Timeline with normal scale . 15

4.3 Timeline with logarithmic scale . 15

4.4 Zoom Illustration at 100% . 16

4.5 Zoom Illustration at 50% . 16

iii

Listings

3.1 Listener to click on a day bar . 10

3.2 Collision detection between slider and day bar . 11

3.3 HTML zoom buttons and commit selection . 11

iv

Chapter 1

RepoVis

RepoVis is, by the time of writing this report, a PhD project for the visualisation of Git repositories inspired by
SeeSoft1. Its purpose is to analyse Git repositories regarding the amount of code lines, the size, the contributors
and the most recent commit informations of each file. Currently RepoVis analyses a selected repository, every
time the user selects it. In the future it is planned that the server analyses the repository only once and when
a user selects the repository, the user immediately gets the desired information and does not have to wait for
the analysis process to finish. As for the technical background: RepoVis is built on Ruby with the framework
Sinatra for preprocessing and uses HTML5 and WebGL for rendering.

Figure 1.1: RepoVis with Pocket-Code [Ebner et al. 2017] repository selected. Screenshot created using
RepoVis.

1SeeSoft was the first officially known visualisation tool for code, published by S.C. Eick, J.L Steffen and E.E. Summer in IEEE
Transactions on Software Engineering (Volume: 18, Issue: 11, Nov 1992) Page: 957 - 968

1

2 CHAPTER 1. REPOVIS

Figure 1.2: Highlight all Java files. Screenshot created using RepoVis.

Figure 1.3: Files colored by when they were changed. Screenshot created using RepoVis.

1.1 Functions

RepoVis has some main functionalities which have the potential to be useful tools in the daily life of developers
and project managers. The following features were tested on the Pocket Code [Ebner et al. 2017] repository of
the Catrobat project of the Graz University of Technology.

1.1.1 Highlight

The first relevant feature is to highlight files in the repository by different presets like ”Last Modifications”,
”Developers”, ”File Types” and ”Issues”. In Figure 1.2 all Java files were highlighted and in Figure 1.3 all
recently changed files.

1.1. FUNCTIONS 3

Figure 1.4: Usability findings can be inspected as they are shown on demand [Feiner and Andrews 2018].
Screenshot created using RepoVis.

Figure 1.5: Presets enable fast switching between different views for different program comprehension
tasks [Feiner and Andrews 2018]. Screenshot created using RepoVis.

1.1.2 Usability Issues

RepoVis has the unique feature to integrate external data into its metric system by collection data from users
through questionairs about the program. This external data is then processed by RepoVis to show issues inside
certain project files [Figure 1.4] to make it easier for developers to solve them.

1.1.3 Presets

Presets can create a general overview of the project with the help of various filter options. Figure 1.5 shows
which metrics can be used as said filter options.

4 CHAPTER 1. REPOVIS

1.2 New Feature: Timeline

For enhancing the manoeuvrability in RepoVis and acquiring a better overview of commit quantity on certain
days, the idea of creating a timeline extension emerged. The timeline should facilitate RepoVis’s usability in a
chronological manner as it is currently rather difficult to move between greater time periods and fulfil said need
of a more general overview. The next chapter is going to present the concept of that timeline and the necessary
requirements to realise it in the best suitable way.

Chapter 2

Timeline Concept

This section describes the functional and non-functional requirements. Generally, the slider differs in several
aspects compared to the previous slider. The differences in implementation and usage will be explained in detail
in this chapter.

2.1 Concept Design

Basically, RepoVis’s main view represents a frame, in which the repository structure of a software project is
shown in detail. A basic slider was the tool for navigating through the history of commits. Not being able
to slide through the repository by commits, but only by days was a major weakness in RepoVis’s usability.
Therefore, a new slider with a more convenient usage was designed [Figure 2.1]. The core of the design is the
slider sketch, that has a integrated chart in the background. The chart displays the relation between commits
and days. In the front of the slider window a cursor can be dragged left and right. When the slider is moved left
or right, the background updates and moves forwards or backwards in the timeline of the repository.

2.2 Slider Usage

Since the previous slider was not fitting the requirements, a new approach for navigating through the repository
history was designed. In Figure 2.1 one can see the cursor, that lies on a bar, which represents the amount of
commits on a specific day. The goal of the redesign was to improve the usability and intuitiveness of searching
through the commit history. The need for the improvement of this specific element appeared, as the selection
of commits with the previous slider were simply too difficult and seemed not precise. Additionally, the time it
took to pick a repository commit was not appropriate.

Figure 2.1: Illustration of slider and cursor selecting a day

5

6 CHAPTER 2. TIMELINE CONCEPT

2.3 Slider Functionality

The objective of the redesign was to improve the usability of navigation in RepoVis. Previously, a commit was
selected by a simple horizontal slider, which lacked intuitiveness and accuracy. Another main problem that
came along with the old version of the slider was the poor performance. Every time the slider has been used,
the main frame was reloaded causing the repository illustration to reload.

2.3.1 Requirements of Slider

Confronted with the mentioned issues, the redesigned slider extension is capable of:

• Faster selection of commits

• Better accuracy of selection

• Easy and intuitive usage

2.3.2 Zoom Feature

The new zoom feature allows the user to zoom in and have a better view of the days in order to select a specific
date. When scrolling with the mouse wheel, the background view updates and shows bigger and easier to select
day bars, that consists of all commits. Additionally, one can move forward and backward when zoomed-in on
the repository, by dragging the slider left or right.

2.3.3 Timeline Description

Another important element of usability within the zoom functionality, is the refreshing timeline description.
As it can be seen in the presented Figures, the description of dates is implemented in a responsive manner. In
Figure 2.2, the scale of zoom only allows a big scope of description. Therefore the year format with marks,
representing a border between two years, was designed. In Figure 2.3, the scope of commit bars is slightly
bigger, which enables an improved and more detailed specification of the timeline. In Figure 2.4, one can see
that the year, the month and the days are visible.

2.3. SLIDER FUNCTIONALITY 7

Figure 2.2: Background Chart with large-size description

Figure 2.3: Background Chart with medium-size description

Figure 2.4: Background Chart with small-size description

8 CHAPTER 2. TIMELINE CONCEPT

Chapter 3

Creating the Timeline

For realising the previously described timeline we decided to use a JavaScript Framework called PixiJS in
version 4.5.5. This chapter is going to give a brief overview of PixiJS’s functionalities that are necessary to
understand, to be able to comprehend how the timeline was created as well as how we used these functionalities
to in fact create the timeline. All information about PixiJS come from the Github page Learning Pixi which is
directly referenced by PixiJS’s official web page.

3.1 PixiJS

PixiJS is a 2d renderer for web browsers. It uses WebGL so it is fast, however if WebGL is not available, it can
also work on its own, but with a worse performance. It is a JavaScript library that can be easily integrated by
including only one file. It is then possible to use all of its functionalities. PixiJS is licensed under the M.I.T.
License.

3.1.1 Usage

With PixiJS one can add images to a website and modify these images. It is also possible to create 2d figures
with PixiJS. If one wants to add an image the user should proceed as described in the following subsections.

3.1.2 Setting up PixiJS

To set up PixiJS it is simply necessary to add the file "pixi.min.js" to the project’s folder. The only thing to do
afterwards is to add the following line inside the HTML file: <script src="pixi.min.js"></script> and
PixiJS is ready to be used.

3.1.3 Getting started

To get started drawing with PixiJS, first it is needed to create an application object, for example: let app =
new PIXI.Application({width: 256, height: 256}); this creates a black HTML canvas element with the
size of 256 pixel width and 256 pixel height. After that, the user adds the canvas to the HTML document by
adding the following line to the script: document.body.appendChild(app.view);.

3.1.4 Sprites and Primitives

As the Github page Learning Pixi states: ”Sprites are basically just images that you can control with code.
You can control their position, size, and a host of other properties that are useful for making interactive and

9

https://github.com/kittykatattack/learningPixi
http://www.pixijs.com/

10 CHAPTER 3. CREATING THE TIMELINE

Figure 3.1: Example of drawn bars with different amount of commits.

animated graphics.” [Github [no date]]. Primitives like lines, circles, triangles and rectangles can be easily
created and modified according to size, shape, color and transparency and can be controlled in the same way as
sprites. Both of these graphic types are made visible through adding them to the stage.

3.1.5 Stage

In the previously created application object a stage exists, which is a special container that renders all ele-
ments added to it by app.stage.addChild(graphics); automatically in the web browser. In general Pixi
containers are objects that are used to group several Pixi sprites and primitives and perform operations on them
simultaneously.

3.2 Timeline Implementation

For the timeline the canvas was created beforehand so the application could access it directly. Afterwards a
”day bar” was created as a rectangle primitive for each commit day with a length that was proportional to the
amount of commits of the respective day and a suitable coloring was chosen [Figure 3.1].

The width was determined according to the amount of days so every rectangle had enough space on the canvas.
Each day rectangle was given an ”on click” listener event to change the color of the respective day rectangle
and move the slider to that position:

graphics.on(’click’, function (data) {
_this.resetOldBarColor();
_this.lastBarColor = heatColor;
_this.selectedCommitDay = this.dayNr;
this.graphicsData[0].fillColor = "0xdc9400";
_this.updateDropDown();
_this.slider.transform.position.x = this.hitArea.x + (this.

hitArea.width / 2);
_this.showCommitInfos(0);

});

Listing 3.1: Listener to click on a day bar

The slider which has the functionality to move around in the timeline is a sprite that was imported from a PNG
file. It was given an ”on pointerup” listerner to choose the day rectangle that is colliding with the slider. For
that collision detection we used the objects bounds and compared the x coordinates and width with some offset:

3.2. TIMELINE IMPLEMENTATION 11

function isColliding(slider, bar) {
let offset = bar.width / 4;
let sliderBounds = slider.getBounds();
let barBounds = bar.getBounds();
return (sliderBounds.x + (sliderBounds.width / 2) > barBounds.x -

offset && (sliderBounds.x + (sliderBounds.width / 2)) <
barBounds.x + barBounds.width + offset);

}

Listing 3.2: Collision detection between slider and day bar

The zoom buttons, the commit selection and the commit details dialog were all realised in plain HTML with
events triggering the corresponding functions in JavaScript:

<button id="zoomin" class="zoomPlus" onclick="timeline.zoomIn()">+</
button>

<button id="zoomout" class="zoomMinus" onclick="timeline.zoomOut()">-</
button>

<button id="zoomreset" class="zoomReset" onclick="timeline.setZoom(100)
">100%</button>

<form>
<select id="subcategory" onchange="timeline.showCommitInfos(this.

selectedIndex)"></select>
</form>

Listing 3.3: HTML zoom buttons and commit selection

12 CHAPTER 3. CREATING THE TIMELINE

Chapter 4

Technical Details

This chapter is going to explain the technical details of the implementation. The project was split into the
following categories:

• Gather Data

• Parse Data

• Calculate Commits per Day

• Normalize Data to fit onto the Screen

• Zoom

4.1 Gather Data

The data that was necessary to visualize were gathered by an API call to RepoVis. A JSON formatted file is
returned which can be parsed [Figure 4.1].

13

14 CHAPTER 4. TECHNICAL DETAILS

Figure 4.1: Data from API call in JSON format

4.2 Parse Data

After the data is received, everything is then saved into a map to have access to the data for the whole duration
of the program.

4.3 Calculate Commits per Day

To create the visualization with bars it is necessary to calculate how many of the commits happened on the
same day. Therefore the program iterates over all commits and parses the timestamps to unixtime in seconds.
After that it is counted how many of the commits did have the same unixtime.

#Commits
day

=

M∑
day

N∑
commit[day]

1 (4.1)

After the calculations a map was created that has day as the key and #Commits as value.

4.4 Normalize Data to fit onto the Screen

To display the data on the screen in a sophisticated way the bars had to be normalized so that everything had
enough space.

4.4.1 Normalize Y-Direction

To fit everything in the y-direction (height of the bars) the height of the screen was divided by the maximum of
found commits per day.

4.5. ZOOM 15

Figure 4.2: Timeline with normal scale

Figure 4.3: Timeline with logarithmic scale

yscaling =
screen height

max
(

#Commits
day

) (4.2)

Each of the drawn bars got scaled by this value to make sure everything fits onto the screen.

yscreen = y ∗ yscaling (4.3)

4.4.2 Normal Scaling vs. Logarithmic Scaling

In section 4.4.1 the bar height is normalized to fit the screen height. Without logarithmic scaling on the y-axis
the bars with a lot of commits would dominate the others and everything looks squished together [Figure 4.2].
With logarithmic scaling each of the bars got more weight to it and hence was easier to read [Figure 4.3].

4.4.3 Normalize X-Direction

To fit everything in the x-direction (width of the bars) the width of the screen was divided by the number of
days.

xscaling =
screen width

days
(4.4)

Since every bar would now only get 1 Pixel of space to fit everything onto the screen this value was divided
by some pixel spacing value (in this case: 3) so that the bars can be bigger and still have some space between
them.

xbetter scaling =
screen width

days
∗

1
Pixel Spacing

(4.5)

Each of the drawn bars got scaled by this value to make sure everything fits onto the screen.

xscreen = x ∗ xbetter scaling (4.6)

4.5 Zoom

With thousands of commits or projects that span over multiple years it is hard to see or click specific commits.
Therefore the decision was made to build a zoom functionality which either zooms to the location of the cursor
(zoom with buttons) or to the location of the mouse pointer (zoom with the mouse wheel). For the zoom the
zoomed location is centered to the middle of the screen and everything is shifted to the sides.

16 CHAPTER 4. TECHNICAL DETAILS

Figure 4.4: Zoom Illustration at 100%

Figure 4.5: Zoom Illustration at 50%

Bibliography

Ebner, Martin, Stefan Janisch, Bettina Höllerbauer, Maria Grandl and Wolfgang Slany [2017]. “Pocket Code –
Programmieren für Alle mit einem offenen Online-Kurs”. 01 [Apr 2017], pages 16–19 (cited on pages 1–2).

Feiner, Johannes and Keith Andrews [2018]. “RepoVis: Software Repository Visualisation with Integrated Code
Metrics and Usability Issues”. 14th May 2018 (cited on page 3).

Github, kittykatattack. Learning Pixi. https://github.com/kittykatattack/learningPixi (cited on page 10).

17

https://github.com/kittykatattack/learningPixi

	Contents
	List of Figures
	Listings
	1 RepoVis
	1.1 Functions
	1.1.1 Highlight
	1.1.2 Usability Issues
	1.1.3 Presets

	1.2 New Feature: Timeline

	2 Timeline Concept
	2.1 Concept Design
	2.2 Slider Usage
	2.3 Slider Functionality
	2.3.1 Requirements of Slider
	2.3.2 Zoom Feature
	2.3.3 Timeline Description

	3 Creating the Timeline
	3.1 PixiJS
	3.1.1 Usage
	3.1.2 Setting up PixiJS
	3.1.3 Getting started
	3.1.4 Sprites and Primitives
	3.1.5 Stage

	3.2 Timeline Implementation

	4 Technical Details
	4.1 Gather Data
	4.2 Parse Data
	4.3 Calculate Commits per Day
	4.4 Normalize Data to fit onto the Screen
	4.4.1 Normalize Y-Direction
	4.4.2 Normal Scaling vs. Logarithmic Scaling
	4.4.3 Normalize X-Direction

	4.5 Zoom

	Bibliography

