
Site Search Engines

A Comparative Survey

Aumüller Thomas, Liegl Daniel, and Platzer Fabian

706.041 Information Architecture and Web Usability 3VU WS 2023/2024
Graz University of Technology

23 Jan 2024

Abstract
Site search engines are used by people interacting with the internet almost daily. Users today
type search queries into text fields on web sites across the World Wide Web and do not
overthink about how and why it works, even less so comparing different web sites based on
their provided search functionality. Three different site search engines were selected based
on their provided functionality and limitations and compared according to a compiled list
of criteria. To compare the setup, as well as the back-end aspect of the three site search
engines, a web site was created to not only provide the option to explore and inspect the
search functionality but also to open up the possibility of comparing the site search engines in
a direct side-by-side manner. This approach revealed numerous differences between the site
search engines, for example, regarding indexing, security, the activity of their communities,
as well as their offered search functionality.

© Copyright 2024 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents ii

List of Figures iii

List of Tables v

List of Listings vii

1 Introduction 1

2 Backend 3
2.1 Self-Hosted SSE Setup . 3

2.1.1 Typesense Self-Hosting . 3
2.1.2 OpenSearch Self-Hosting . 4

2.2 Dataset . 5
2.3 Indexing. 5

2.3.1 Indexing for Typesense . 5
2.3.2 Indexing for OpenSearch . 6
2.3.3 Indexing for Algolia . 6

3 Frontend 11
3.1 Integration of Typesense . 11
3.2 Integration of OpenSearch . 11
3.3 Integration of Algolia . 11

4 Search Feature Implementation 17
4.1 Curation of Search Results . 17
4.2 Phrase Search . 17
4.3 Fuzzy Search . 19

5 Comparison 21
5.1 Backend Setup . 21
5.2 Indexing. 21
5.3 Search . 21
5.4 Limits . 21
5.5 Analytics . 23
5.6 General Criteria . 23
5.7 Overall Observations . 23

i

6 Concluding Remarks 25

Bibliography 27

ii

List of Figures

2.1 Dataset: Movies and TV Shows on Netflix 5
2.2 Algolia Indexing Interface . 9
2.3 Algolia Indexing Interface After Adding Documents 9

3.1 Single Seach Bar . 13

4.1 Algolia Rules Interface . 18
4.2 Creating a Rule in Algolia . 18

5.1 Algolia Pricing Model . 24

iii

iv

List of Tables

1.1 Positive and Negative Aspects of Self-Hosted SSEs.. 2
1.2 Positive and Negative Aspects of Cloud-Based SSEs 2

5.1 Backend Setup Criteria . 22
5.2 Indexing Criteria . 22
5.3 Search Criteria . 22
5.4 Limits Criteria . 23
5.5 Comparison of SSEs . 23

v

vi

List of Listings

2.1 Typesense Docker Compose Template . 4
2.2 OpenSearch settings to enable CORS . 4
2.3 Indexing for Typesense in Python . 7
2.4 JSON objects for OpenSearch . 8
2.5 Indexing for OpenSearch in Python . 8

3.1 Typesense Integration. 12
3.2 Typesense Search Query. 12
3.3 Converting Typesense JSON Results into HTML 13
3.4 OpenSearch Search Query . 14
3.5 Converting OpenSearch JSON Results into HTML 14
3.6 Algolia Integration into Template . 15
3.7 Algolia Search Query. 15
3.8 Converting Algolia JSON Results into HTML 16

4.1 Creating Override in Typesense . 18
4.2 Match Phrase Query of OpenSearch . 19
4.3 Match Query with Fuzziness in OpenSearch 20

vii

viii

Chapter 1

Introduction

A number of possibilities are available for web site owners to include local site search into their web site,
enabling end users to search for content on the site. One of those is to integrate a site search engine (SSE)
into the web site.

There are many SSEs to choose from, both free and commercial, each providing a wide and almost
identical feature pallete with a multitude of options for the user. This survey explored and compared three
such SSEs: Typesense, OpenSearch, and Algolia. A list of criteria was created as a basis to assess and
compare the SSEs.

In order to gain experience and directly observe similarities and differences with each of the chosen
three SSEs, a self-hosted website was created with Metalsmith. The dataset of choice is the “Movies and
TV shows on Netflix” dataset from Bansal [2021], which provides a sufficient number of data records
and is from an everyday setting. This dataset was individually indexed for each SSE. In the frontend, the
user can type queries in a single search box and the matching results for each SSE are displayed in three
columns side by side for the user to see.

Self-hosting an SSE on one’s own hardware has some advantages and disadvantages, as can be seen in
Table 1.1. Alternatively, a cloud-based hosting provider can be used. Again, there are advantages and
disadvantages, as can be seen in Table 1.2.

The three SSEs covered in this survey are:

• Typesense: Typesense is an open-source and typo-tolerant SSE [Typesense 2023c]. Typesense was
chosen as the first open-source and self-hosted option, because it provides a simple developer-friendly
setup and comes with a wide array of features and plugins.

• OpenSearch: OpenSearch is a community-driven and open-source SSE, that not only provides search
capabilities but also some analytical functionality [OpenSearch 2023d]. It is the second open-source
and self-hosted SSE in the survey.

• Algolia: Algolia is a commercial, cloud-based SSE [Algolia 2023]. A free trial version of Algolia
was used for the comparison. Algolia provides a powerful search implementation with numerous
features and a variety of sophisticated search analysis tools. It hides a great deal of the complexity
behind its web interface and is easy to setup.

1

2 1 Introduction

Positive Aspects Negative Aspects

Open-source.

More control.

Own server needed.

Complex setup.

Heavy maintenance.

Table 1.1: Positive and negative aspects of self-hosted SSEs.

Positive Aspects Negative Aspects

No hardware needed.

Fewer limitations (e.g. computational power).

Less maintenance.

Hidden complexity.

Lack of control.

Data privacy.

Network bandwidth limits.

Table 1.2: Positive and negative aspects of cloud-based SSEs.

Chapter 2

Backend

This chapter describes how the backend setup of the three site search engines, including the dataset used
and how it was prepared and indexed for each of the SSEs.

2.1 Self-Hosted SSE Setup
Typesense and OpenSearch were the two Self-Hosted SSEs of choice. An Apache 2.0 web server and the
servers for OpenSearch and Typesense were installed on a Thinkpad W540 with an Intel i7-4600M (4)
@ 3.600GHz and 16 gigabytes of RAM. This machine is running Ubuntu 22.04.3 LTS x86_64.

To make the process of setting up the backend easier, Docker was chosen as the platform of choice:

“Docker provides the ability to package and run an application in a loosely isolated en-
vironment called a container. The isolation and security lets you run many containers
simultaneously on a given host. Containers are lightweight and contain everything needed
to run the application, so you don’t need to rely on what’s installed on the host.” [Docker
2023]

These properties and the fact that Docker Compose templates are available for OpenSearch (refer to
OpenSearch [2023b]) and Typesense (refer to Typesense [2023b]), made it easy to setup the servers
without problems.

2.1.1 Typesense Self-Hosting
Typesense can be setup on many different platforms, DEB, RPM and prebuilt binaries can be found on
their downloads page, which can be found in Typesense [2023a]. The platforms supported by Typesense
are:

• Docker

• Kubernetes

• macOS (Binary and Homebrew)

• Ubuntu/Debian (deb package)

• CentOS/RHEL (rpm package)

• Windows (within WSL)

The Docker Compose template provided for Typesense (refer to Listing 2.1) creates a simple setup, to
start working with Docker immediately.

3

4 2 Backend

1 version: ’3.4’
2 services:
3 typesense:
4 image: typesense/typesense:0.25.1
5 restart: on-failure
6 ports:
7 - "8108:8108"
8 volumes:
9 - ./typesense -data:/data
10 command: ’--data-dir /data --api-key=xyz --enable-cors’

Listing 2.1: Typesense Docker compose template.

1 - http.cors.allow-origin:"http://<yourdomain >"
2 - http.cors.enabled:true
3 - http.cors.allow-headers:X-Requested -With,X-Auth-Token,Content-Type,Content-Length,

Authorization
4 - http.cors.allow-credentials:true

Listing 2.2: OpenSearch settings to enable CORS

2.1.2 OpenSearch Self-Hosting
OpenSearch was setup using their Docker Compose template, made available in their documentation
(refer to OpenSearch [2023b]). The platforms supported by OpenSearch are:

• RHEL/CentOS

• Rocky Linux

• CentOS/RHEL

• Windows Server 2019

The Docker Compose template creates a setup with two nodes running OpenSearch and includes the
OpenSearch Dashboard. One thing that needed setup from our side was Cross-Origin-Resource-Sharing
(CORS). “CORS is a part of HTTP that lets servers specify any other hosts from which a browser should
permit loading of content.” [MDN 2023]. Due to CORS not being enabled by default, no search requests
could be made. The settings shown in Listing 2.2 had to be changed to enable CORS and to start working
with OpenSearch. This problem could have been prevented if a proper rerouting setup for the API calls
was made by using Nginx as a proxy server. This way API calls do not interfere with the same-origin
policy [F5 2023].

During the survey work, there were three incidents regarding OpenSearch where the index data was
lost without apparent reason. It is our theory, that it happened due to enabling CORS and OpenSearch
not requiring an API key or any other authentication out of the box. When using OpenSearch, security
settings have to be enabled and set up by the backend engineer [OpenSearch 2023a].

Dataset 5

Figure 2.1: Dataset: Movies and TV shows on Netflix, netflix_titles.csv (3.4 MB) from Bansal
[2021].

2.2 Dataset
An important part of the survey website was the dataset used to compare the individual SSEs. Without
data, comparing the search and indexing aspects of our criteria sections and showcasing the differences
in a meaningful way would not be possible.
Web sites like Huggingface [2023] or Kaggle [2023] offer a vast array of datasets to choose from with

the “License CC0: Public Domain”, indicating that the creator of this dataset placed the work in the
public domain. Thus, it is possible to copy, modify, or even use the dataset for commercial purposes,
without asking for permission from the creator.
The chosen dataset contains metedata about movies and TV shows on Netflix comprising roughly 3.4

MB of data [Bansal 2021]. These listings are provided in a comma-separated file format and consist of
12 columns and 8807 rows, as can be seen in Figure 2.1. Movies and TV shows are encountered by most
people in their daily lives, and hence need little further explanation.

2.3 Indexing
An index is a database containing metadata about a website. This data must be generally be provided by
the owner of the site, for example a list of products. Algolia also provides built-in site crawling, which
creates this metadata for a site. Indexing for OpenSearch and Typesense was done using Python 3.11.6
running on Windows 10 Home Version 22H2 and the opensearchpy and typesense packages.

2.3.1 Indexing for Typesense
The index for Typesense was created using the typesense Python package, as shown in Listing 2.3. The
data was read and turned into a Pandas DataFrame. Each of the rows was first converted to a dictionary,
and then converted to the JSON Lines format [Ward 2023].
Afterwards an instance of the typesense.Client class was created. It is required to pass the admin

API key, the host name, and the port of the Typesense server. As can be seen in line 18 of Listing 2.3, it
is possible to use multiple Typesense server nodes at the same time. SSL is also supported.
The index (in Typesense these are called collections) is then created using the create()method in line

26. It is required to define all fields of the documents in advance. Using the retrieve() method, we
tested if the index works as intended.

6 2 Backend

To add the documents, the import_() function was used in line 50. In comparison to OpenSearch, the
action has to be defined for all the documents passed to the function. Different actions cannot be created
for single documents in the request. Instead of the create action, upsert can be used to update if the
document exists, or create a new document, if it does not.

2.3.2 Indexing for OpenSearch
Indexing for OpenSearch was done using the opensearchpy Python package. First, the client was created
using the OpenSearch class, as shown in Listing 2.5. This class contains all the functionality needed to
interface with the OpenSearch server. When creating the client, the host name and port must be provided.
SSL encryption is supported by this client, but was not used during our survey. Afterwards, the CSV file
is read using Pandas’ read_csv() function and a Pandas DataFrame is created [pandas 2020].

Once imported, the DataFrame needs to be converted into the format required by the bulk import
function of OpenSearch. This format consists of two JSON objects. The first contains the action, in
our case index, the index the document belongs to (_index) and a unique identifier for the document
(_id). Other actions which can be used include create, update, and delete. The second JSON object
contains the actual data of the document. The backend engineer can insert fields as required into this
object. An example of these JSON objects can be found in Listing 2.4. There are probably better ways
to create the JSON string needed for this API call.

After creating the JSON string, the last thing to do is to make the API call using the OpenSearch.bulk()
method. This is just a matter of passing the string as an argument and checking the response for any
errors.

2.3.3 Indexing for Algolia
Algolia provides a web interface for indexing, which is the most convenient way of indexing of the three
SSEs discussed. When logged in to the web-interface, navigate to "Data sources"→ "Indices" to access
the Indices interface. After clicking "Create Index", type in a name for the index, and the the index is
created. Data can be added either manually or by uploading a CSV or JSON file, as shown in Figure 2.2.
There is no need to define the data fields in advance.

At first, uploading data as JSON was attempted. However, the trial license provided by Algolia only
included a limited number of API calls, so this did not succeed. However, uploading a CSV file containing
the Netflix movie data worked instantly. Once data has been uploaded, the web interface allows the index
to be browsed and entries can be manually added, edited, and removed, as shown in Figure 2.3.

Indexing 7

1 import pandas as pd
2 import jsonlines
3 import typesense
4 import os
5
6 df = pd.read_csv("netflix_processed.csv")
7 df = df.astype(str)
8 json_out = []
9
10 for index, row in df.iterrows():
11 json_out.append(row.to_dict())
12
13 with jsonlines.open(’typesense_documents.jsonl’, ’w’) as writer:
14 writer.write_all(json_out)
15
16 client = typesense.Client({
17 ’api_key’: ’Your Admin API Key’,
18 ’nodes’: [{
19 ’host’: "Your Hostname",
20 "port": "8108",
21 "protocol": "http"
22 }],
23 ’connection_timeout_seconds’: 2
24 })
25
26 create_response = client.collections.create({
27 "name": "netflix",
28 "fields": [
29 {"name": "id", "type": "string", "index": True},
30 {"name": "type", "type": "string"},
31 {"name": "title", "type": "string"},
32 {"name": "director", "type": "string"},
33 {"name": "cast", "type": "string"},
34 {"name": "country", "type": "string"},
35 {"name": "date_added", "type": "string"},
36 {"name": "release_year", "type": "string"},
37 {"name": "rating", "type": "string"},
38 {"name": "duration", "type": "string"},
39 {"name": "listed_in", "type": "string"},
40 {"name": "description", "type": "string"},
41 {"name": "url", "type": "string"},
42 {"name": "url_title", "type": "string"}
43],
44 })
45
46 retrieve_response = client.collections[’netflix’].retrieve()
47
48 with open("typesense_documents.jsonl", encoding="utf-8") as jsonl_file:
49 response = client.collections[’netflix’].documents
50 .import_(jsonl_file.read(), {"action": "create"})
51 print(response)

Listing 2.3: Indexing for Typesense using the typesense package in Python.

8 2 Backend

1 {"index" : { "_index" : "netflix", "_id" : "5940" } }
2 {
3 "title":"Breaking Bad",
4 "description":"A high school chemistry teacher dying of cancer teams with a
5 former student to secure his family’s future by manufacturing and
6 selling crystal meth.",
7 "cast": "Bryan Cranston, Aaron Paul, Anna Gunn, Dean Norris, Betsy Brandt,
8 R.J. Mitte, Bob Odenkirk, Steven Michael Quezada, Jonathan Banks,
9 Giancarlo Esposito",
10 "listed_in":"Crime TV Shows, TV Dramas, TV Thrillers"
11 }

Listing 2.4: Example of the two JSON objects needed for the bulk operation of OpenSearch.

1 from opensearchpy import OpenSearch
2 import pandas as pd
3
4 client = OpenSearch(
5 hosts = [{’host’: "Your Hostname", ’port’: 9200}],
6 http_compress = True,
7 use_ssl = False,
8)
9
10 df = pd.read_csv("./netflix_processed.csv", index_col=0)
11
12 data = ""
13
14 #convert the dataframe to the JSON format required by OpenSearch
15 for index, row in df.iterrows():
16 description = row[’description’].replace("\n", " ")
17 description = description.replace(’"’, "’")
18 cast = row["cast"].replace(’"’, "’")
19 director = row["director"].replace(’"’, "’")
20 title = row[’title’].replace("\n", " ")
21 title = title.replace(’"’, "’")
22 data = data + ’’’{{"index" : {{ "_index" : "netflix", "_id" : "{}" }} }}
23 {{"cast": "{}", "country":"{}", "date_added":"{}", "description":"{}",
24 "director":"{}", "duration":"{}", "listed_in":"{}", "rating":"{}",
25 "release_year":"{}", "title":"{}", "type":"{}", "url":"{}",
26 "url_title":"{}"}}\n’’’
27 .format(index, cast, row["country"], row["date_added"], description ,
28 director , row["duration"], row[’listed_in’], row[’rating’],
29 row[’release_year’], title, row[’type’], row[’url’], row[’url_title’]
30)
31
32 response = client.bulk(data, timeout=100)
33 print(response)

Listing 2.5: Indexing for OpenSearch using the opensearchpy package in Python.

Indexing 9

Figure 2.2: Algolia indexing interface.

Figure 2.3: Algolia indexing interface after adding documents to the index.

10 2 Backend

Chapter 3

Frontend

In order to showcase the different SSEs, a web site with a frontend was needed. The site is hosted on
an Apache 2.0 web server and is generated using the Metalsmith static site generator. Metalsmith is a
simple, pluggable static site generator built in JavaScript. It is designed to be minimalistic and highly
flexible, allowing developers to create static websites by chaining together various plugins to process
and transform files. Specifically, the bare-bones starter by Werner Glinka was used for this project. The
Nunjucks templating engine was used to construct the individual HTML pages.

For the integration of the SSEs into the frontend, a single search bar was used. A search query can be
entered, and is then sent to all three SSEs at the same time. The resulting JSONs from the SSEs were
converted into HTML to show them on the web page, as shown in Figure 3.1.

3.1 Integration of Typesense
Integrating Typesense turned out to be relatively easy. The <script> element was used to include the
necessary library, as shown in Listing 3.1, and then the backend was queried using the respective request
function, as shown in Listing 3.2. The resulting JSONwas converted into HTML and displayed, as shown
in Listing 3.3.

3.2 Integration of OpenSearch
Integrating OpenSearch turned out to be the most challenging out of all three SSEs. It only has a node.js
library and does not support vanilla JavaScript. Hence, a manual fetch() query had to be written, as
shown in Listing 3.4. Then, JavaScript was used to convert the resulting JSON into HTML for display,
as shown in Listing 3.5.

3.3 Integration of Algolia
Integrating Algolia turned out to be similar to Typesense. The <script> element was used to include the
necessary library, as shown in Listing 3.6, Then, the backend was queried using the respective request
function, as shown in Listing 3.7. Finally, the JSON results were converted into HTML for display, as
shown in Listing 3.8.

11

12 3 Frontend

1 <head>
2 <script src="https://cdn.jsdelivr.net/npm/typesense@1/dist/typesense.min.js">
3 </script>
4 // ... (rest of your scripts)
5 </head>

Listing 3.1: Typesense integration into the web page template.

1 var typesense = new Typesense.Client({
2 ’nodes’: [
3 {
4 ’host’: ’YourHostname ’,
5 ’port’: ’8108’,
6 ’protocol ’: ’http’
7 },
8],
9 ’apiKey ’: ’Your Search-Only API Key’,
10 ’numRetries ’: 3, // A total of 4 tries (1 original try + 3 retries)
11 ’connectionTimeoutSeconds ’: 10,
12 ’retryIntervalSeconds ’: 0.1,
13 ’healthcheckIntervalSeconds ’: 2,
14 ’logLevel ’: ’debug’
15 })
16
17 function searchTypesense (searchTerm) {
18 typesense.collections(’netflix ’).documents().search({
19 ’q’: searchTerm ,
20 ’query_by ’: ["title", "director", "cast", "description", "listed_in",
21 "country", "release_year", "rating", "duration"]
22 }).then(function (searchResults) {
23 this.createHTMLFromJSON(searchResults.hits)
24 }).catch(function (error) {
25 document.getElementById(’typesense -results ’).innerHTML = error
26 })
27 }

Listing 3.2: Typesense search query using the JavaScript client.

Integration of Algolia 13

Figure 3.1: A single search bar is used to search all three search engines.

1 function createHTMLFromTypesenseJSON(data, timeTaken) {
2 var htmlContent =
3 ‘<h1>TypeSense </h1><p class="time-taken">Time taken: ${timeTaken} ms</p><hr>‘
4 for (let i = 0; i < Math.min(3, data.length); i++) {
5 htmlContent = htmlContent.concat(
6 ‘<p>Title: ${data[i].document.title}</p>
7 <p>Description: ${data[i].document.description}</p>
8 <p>Director: ${data[i].document.director}</p>
9 <p>Cast: ${data[i].document.cast}</p>
10 <p>Type: ${data[i].document.type}</p>
11 <p>Country: ${data[i].document.country}</p>
12 <p>Date Added: ${data[i].document.date_added}</p>
13 <p>Release Year: ${data[i].document.release_year}</p>
14 <p>Rating: ${data[i].document.rating}</p>
15 <p>Duration: ${data[i].document.duration}</p>
16 <p>Listed In: ${data[i].document.listed_in}</p>
17 </br><hr>‘);
18 }
19 document.getElementById(’typesense -results ’).innerHTML = htmlContent;
20 return htmlContent;
21 }

Listing 3.3: Converting the Typesense JSON results into HTML.

14 3 Frontend

1 const searchQuery = {
2 query: {
3 multi_match: {
4 query: searchTerm ,
5 fuzziness: "AUTO",
6 fields: ["title", "director", "cast", "description",
7 "listed_in", "country", "rating", "type"]
8 },
9 },
10 };
11
12 fetch(search_api_url , {
13 method: ’POST’,
14 headers: {
15 ’Content-Type’: ’application/json’,
16 },
17 body: JSON.stringify(searchQuery),
18 })
19 .then(response => {
20 if (!response.ok) {
21 throw new Error(‘HTTP error! Status: ${response.status}‘);
22 }
23 return response.json();
24 })

Listing 3.4: OpenSearch Query using the fetch() function.

1 function createOpenSearchHTMLFromJSON(data, timeTaken) {
2 var htmlContent =
3 ‘<h1>OpenSearch </h1><p class="time-taken">Time taken: ${timeTaken} ms</p><hr>‘
4 console.log(data)
5 for (let i = 0; i < Math.min(3, data.length); i++) {
6 htmlContent = htmlContent.concat(
7 ‘<p>Title: ${data[i]._source.title}</p>
8 <p>Description: ${data[i]._source.description}</p>
9 <p>Director: ${data[i]._source.director}</p>
10 <p>Cast: ${data[i]._source.cast}</p>
11 <p>Type: ${data[i]._source.type}</p>
12 <p>Country: ${data[i]._source.country}</p>
13 <p>Date Added: ${data[i]._source.date_added}</p>
14 <p>Release Year: ${data[i]._source.release_year}</p>
15 <p>Rating: ${data[i]._source.rating}</p>
16 <p>Duration: ${data[i]._source.duration}</p>
17 <p>Listed In: ${data[i]._source.listed_in}</p>
18 </br><hr>‘);
19 }
20 document.getElementById(’opensearch -results ’).innerHTML = htmlContent;
21 return htmlContent;
22 }

Listing 3.5: Converting the OpenSearch JSON results into HTML.

Integration of Algolia 15

1 <head>
2 <script
3 src="https://cdn.jsdelivr.net/npm/algoliasearch@4.20.0/dist/algoliasearch.umd.js"
4 integrity="sha256-g/utnPLPYCY4MUPmsSC3/SyX889kVpSgdd0+ySDMjo4="
5 crossorigin="anonymous"
6 ></script>
7 // ... (rest of your scripts)
8 </head>

Listing 3.6: Algolia integration into web page template.

1 const algolia_client = algoliasearch("Your Application ID", "Your Search-Only API
Key")

2 const algolia_index = algolia_client.initIndex("ms_indices")
3
4 function searchAlgolia(searchTerm)
5 {
6 var startTime = performance.now()
7 algolia_index.search(searchTerm)
8 .then(function (response) {
9 createAlgoliaHTMLFromJSON(response.hits)
10 })
11 }

Listing 3.7: Algolia Search Query using the JavaScript client.

16 3 Frontend

1 function createAlgoliaHTMLFromJSON(data, timeTaken) {
2 var htmlContent =
3 ‘<h1>Algolia </h1><p class="time-taken">Time taken: ${timeTaken} ms</p><hr>‘
4
5 for (let i = 0; i < Math.min(3, data.length); i++) {
6 console.log(data);
7
8 htmlContent = htmlContent.concat(
9 ‘<p>Title: ${data[i].title}</p>
10 <p>Description: ${data[i].description}</p>
11 <p>Director: ${data[i].director}</p>
12 <p>Cast: ${data[i].cast}</p>
13 <p>Type: ${data[i].type}</p>
14 <p>Country: ${data[i].country}</p>
15 <p>Date Added: ${data[i].date_added}</p>
16 <p>Release Year: ${data[i].release_year}</p>
17 <p>Rating: ${data[i].rating}</p>
18 <p>Duration: ${data[i].duration}</p>
19 <p>Listed In: ${data[i].listed_in}</p>
20 </br><hr>‘)
21 }
22 document.getElementById(’algolia-results ’).innerHTML = htmlContent;
23 return htmlContent;
24 }

Listing 3.8: Converting the Algolia JSON results into HTML.

Chapter 4

Search Feature Implementation

A number of advanced search features can be implemented in the three SSEs. For this survey, three
commonly used search features were explored: curation of search results, phrase search, and fuzzy
search. Showcase videos were created to explain these features [G2 2023b].

4.1 Curation of Search Results
The operators of a SSE can use curation to manipulate the search results of their users to fit specific needs
(for example, sponsored search results). For this survey, curation was implemented in Typesense and
Algolia:

• Typesense: Overrides allow the curation of search results when using Typesense. These are rules
set in the backend, that activate when certain strings are provided in the query. Creating an override
is done by sending a query to the backend. Typesense allows the operator to include and exclude
search results for given strings. This feature does not appear to support fuzzy search, however. An
example of creating an override using the Python API can be found in Listing 4.1.

• Algolia: The web interface of Algolia allows the backend engineer to create rules for search result
curation. Figure 4.1 shows Algolia’s Rules interface. From this interface, new rules can be created,
exported, and imported. When creating a rule, the interface presents a search bar and the usual
results for the given search string, as seen in Figure 4.2. The operator can then pin results to a certain
ranking, which sets the rule for this query. After clicking review and publish, the rule is in effect.
Fuzzy search is supported by this feature.

For demonstration, we implemented curation in Typesense and Algolia in such a way, that a search for
the actor "Bryan Cranston" always yields "You don’t mess with the Zohan" as the first result.

4.2 Phrase Search
Phrase search allows users to search for exact combinations, spelling, and order of words, by enclosing
their phrase inside double quotes. All three SSEs support phrase search:

• Typesense: Phrase search is supported by default.

• OpenSearch: The match phrase query of OpenSearch enables the use of phrase search. An example
can be found in Listing 4.2.

• Algolia: Phrase search is supported by default.

17

18 4 Search Feature Implementation

1 override = {
2 "rule": {
3 "query": "bryan cranston",
4 "match": "contains"
5 },
6 "includes": [
7 {"id": "5940", "position": 2},
8 {"id": "8790", "position": 1}
9]
10 }
11
12 client.collections[’netflix’].overrides.upsert(’curate-breaking -bad’, override)

Listing 4.1: Creating an override in Typesense.

Figure 4.1: Algolia rules interface.

Figure 4.2: Creating a rule in Algolia.

Fuzzy Search 19

1 GET _search
2 {
3 "query": {
4 "match_phrase": {
5 "title": "in the jungle"
6 }
7 }
8 }

Listing 4.2: Match phrase query of OpenSearch.

4.3 Fuzzy Search
Users of search engines do not always type their queries correctly. Either due to random spelling mistakes
or not knowing the correct spelling of the word. Fuzzy search allows for typo-tolerant searching, using
a metric of how similar two different words are. Such a metric is called the edit distance. There
are different ways of calculating the edit distance, but the most popular of these metrics is called the
Levenshtein distance. This metric counts the number of deletions, insertions or substitutions needed to
transform one string to another [Typesense 2023e]. All three SSEs support fuzzy search:

• Typesense: Fuzzy Search is supported out of the box. There are multiple parameters that can be
set: maximum number of typos, minimum word length for 1-typo and 2-typo correction, whether
space should be treated as a typo (e.g. q = basket ball instead of q = basketball), and the
typo token threshold, which is the minimum number of search results, where Typesense does not
search for typo-corrected variations [Typesense 2023d].

• OpenSearch: The match query of OpenSearch can have a fuzziness parameter specified to enable
fuzzy search, as shown in Listing 4.3. When using the AUTO setting for fuzziness, the following rules
apply: Strings of 0-2 characters must match exactly. Strings of 3-5 characters allow 1 edit. Strings
longer than 5 characters allow 2 edits [OpenSearch 2023c].

• Algolia: This feature is enabled by default in Algolia. The web interface also provides ways to
customize how fuzzy search works. It is possible to change the minimum length needed for allowing
one or two typos. Typo tolerance can also be disabled for certain attributes of documents or for
certain words.

20 4 Search Feature Implementation

1 GET testindex/_search
2 {
3 "query": {
4 "match": {
5 "title": {
6 "query": "wnid",
7 "fuzziness": "AUTO"
8 }
9 }
10 }
11 }

Listing 4.3: Match query with fuzziness parameter of OpenSearch.

Chapter 5

Comparison

In order to conduct a meaningful comparison of the three selected SSEs, a list of 109 individual criteria
was compiled. The criteria are structured into seven groups, namely Backend Setup, Indexing, API
Clients/Interfaces, Search, Limits, Analytics, and General Criteria. The full resulting comparision was
compiled in a spreadsheet [G2 2023a], the main results are presented in this chapter.

The examination of the differences between the SSEs regarding the implementation was started with
the assessment of the Backend Setup criteria. For this section of the criteria, it was beneficial that a
website was developed and it was possible to distinctly differentiate the three SSEs based on how they
were implemented into the website.

5.1 Backend Setup
A comparison of the thre SSEs’ characteristics in the Backend Setup category can be seen in Table 5.1.
It includes crucial characteristics of the SSE such as whether the SSE is self-hosted or cloud-based, or
if the SSE provides a built-in web interface to hide complexity and allow for a more streamlined user
experience when setting up the SSE to the desired standards.

5.2 Indexing
Indexing criteria include the difficulty of indexing the given data, whether a GUI is provided, support for
batch indexing, and support for bulk edits. Table 5.2 compares the three SSEs in this regard. Algolia
does not give information regarding the backwards compatibility of its generated index.

5.3 Search
The criteria in terms of search functionality include support for filtering, faceted search, result ranking,
taxonomy integration, phrase search, and fuzzy search. The comparison is shown in Table 5.3. All three
SSEs support the majority of characteristics, but Typesense and OpenSearch often require plugins or
query parameter modification to do so.

5.4 Limits
The limits category includes limits on the number of documents, size of index, size of records, and
number of API keys. The comparision is shown in Table 5.4. As expected, Algolia, being a paid service,
restricts its service in some respects. Typesense has no limitations as such, but OpenSearch is constrained
in places by the hardware it runs on.

21

22 5 Comparison

Backend Setup Criteria Typesense OpenSearch Algolia

Self-Hosted Yes Yes No
Cloud-Based Yes No Yes
Other Ways of setting up Linux, MacOS, Windows Linux, Windows N/A
Difficulty Easy (Docker) Easy (Docker) N/A
Docker Compose Templates Yes Yes N/A
Builtin Web Interface No Yes Yes
GPU Acceleration Support Yes Yes N/A
Built Using C++ Java C++
Primary Index Location RAM Disk, with RAM cache RAM

Table 5.1: Backend setup criteria.

Indexing Criteria Typesense OpenSearch Algolia

Difficulty Easy Complex Very Easy
Visual Interface No No Yes
Multiple indices Yes Yes Yes
How to index HTML Request HTML Request Web interface, HTML Req.
Batch indexing Yes Yes Yes
Indexing file formats JSONL JSON JSON, CSV, TSV
Basic Unit of Data JSON Object 2 JSON Objects 1 line, 1 JSON Obj.
Flexibility in fields Yes Yes Yes
Updating Yes Yes Yes
Bulk Edits Yes Yes Yes
Backwards compatibility Full backwards compatibility 1 major version N/A

Table 5.2: Indexing criteria.

Search Criteria Typesense OpenSearch Algolia

Search Filtering Options Yes (param) Yes (param) Yes
Faceted Search Yes (param) Yes (plugin) Yes
Result Ranking Yes Yes (plugin) Yes
Advanced Search Yes Yes Yes
Taxonomies Yes (plugin) Yes Yes
Query Suggestions Yes Yes Yes
Dictionaries No Yes Yes
Fuzzy Search Yes Yes (query) Yes
Personalized Search Results Yes Yes (plugin) Yes (premium)
Negative Keyword Search Yes Yes Yes
Phrase Search Yes Yes Yes
Vector Search Yes Yes No
Semantic Search Yes Yes No
Search UI Component Library Yes, Requires hosted search Yes, Instantsearch.js Yes, Instantsearch.js
Visual Search Yes Yes Yes
Voice Search No No Yes

Table 5.3: Search criteria.

Analytics 23

Limits Criteria Typesense OpenSearch Algolia

Number of documents No limitation Constrained by RAM Unknown
Maximum number of indices No limitation No limitation No limitation
Maximum index size No limitation Constrained by RAM 128GB
Maximum words per field No limitation No limitation No limitation
Maximum record size No limitation No limitation 10KB
Number of API keys No limitation No limitation 5.000

Table 5.4: Limits criteria.

Major Criteria Typesense OpenSearch Algolia

Paid No No Yes
Faceted Search Yes (parameter) Yes (plugin) Yes
Advanced Search Yes Yes Yes
Query Suggestion Yes Yes Yes
Fuzzy Search Yes Yes (in query) Yes
Taxonomies Yes (plugin) Yes Yes
Dictionaries No Yes Yes
Security (Out-of-the-box) Seach only; Admin API keys Manual setup Seach only; Admin API keys
Personalized Results Yes (plugin) Yes (plugin) Yes (premium tier)

Table 5.5: Comparison of the three SSEs.

5.5 Analytics
Analytics are of lesser importance in this survey, since there is not enough traffic on the demo web site
for a meaningful comparison. Rather than inspecting the performance and utility of the analytical tools
by each SSE, it was decided to only list the available analytic tools. The comparison can be found in
the accompanying spreadsheet [G2 2023a]. Surprisingly enough, all of the SSEs offered analytical tools
to observe the infrastructure, analyse performance or specific metrics, and Typesense and Algolia even
support A/B Testing.

5.6 General Criteria
General Criteria encompasses metrics such as official support, support channels, community, and docu-
mentation. The comparison can be found in the accompanying spreadsheet [G2 2023a].

5.7 Overall Observations
Some of the most important differences between the three SSEs are highlighted in Table 5.5. All three
SSEs support advanced search and fuzzy search. Similarly, all three SSEs support more sophisticated
functionality like faceted search and query suggestions, even though these are not supported by all SSEs
on the market.

One of the most striking differences between the three SSEs is that Typesense does not support
dictionaries as of now, while the other two support dictionaries out of the box. There were serious
security issues with OpenSearch, where the indices were deleted by an unknown actor. This did not

24 5 Comparison

Figure 5.1: Algolia pricing model.

happen with Typesense and Algolia, because both of them offer out-of-the-box security using search and
admin API keys. OpenSearch needs manual security setup.

Typesense and OpenSearch are both free and open-source. Algolia is a commercial product and offers
a variety of pricing models, shown in Figure 5.1. However the higher tier plans are not transparently
priced, and pricing has to be requested.

Chapter 6

Concluding Remarks

This survey compares three Site Search Engines (SSEs): Typesense, OpenSearch, and Algolia. With the
the created demo website, it was possible to explore all three SSEs side by side, which in turn enabled
parallel observation and comparing the three efficiently.

The accompanying spreadsheet [G2 2023a] provides a comprehensive comparison of the three SSEs.
The main similarities and differences were presented in Chapter 5. The comparison also unveiled some
hidden peculiarities of the three SSEs such as OpenSearch having some security issues leading to the
involuntary deletion of indices and Algolia having an intransparent pricing model.

Overall, in case the pricing model is not a hindrance, Algolia is the most streamlined and consumer-
friendly SSE. It includes many important criteria out of the box and provides a web interface for the user
which hides many of its complexities.

If an open-source option is preferred, Typesense is strongly recommended as the site search engine of
choice. It offers countless options for customisation, and is easier to set up and use than OpenSearch.
Typesense supports a wide array of programming languages and frameworks, providing a very good
developer experience. Furthermore, the strikingly active community adds another layer of support to
the official paid support and the quite extensive documentation provided by the Typsense team. Finally,
Typesense is the only SSE which does not collect private user-related data.

25

26 6 Concluding Remarks

Bibliography

Algolia [2023]. Algolia. 2023. https://algolia.com/ (cited on page 1).

Bansal, Shivam [2021]. Netflix Movies and TV Shows. 27 Sep 2021. https://kaggle.com/datasets/shiva
mb/netflix-shows (cited on pages 1, 5).

Docker [2023]. Docker overview. 28 Nov 2023. https://docs.docker.com/get-started/overview/ (cited
on page 3).

F5 [2023]. NGINX: Advanced Load Balancer, Web Server, & Reverse Proxy (29 Nov 2023). https://ngi
nx.com/ (cited on page 4).

G2 [2023a]. Criteria Spreadsheet. Information Architecture and Web Usability, WS 2023, G2. 28 Nov
2023. https://docs.google.com/spreadsheets/d/1G1l-4-Oi-zswkyT_IvtEECdnMQlUqo92hm6VAxsr2-k/
(cited on pages 21, 23, 25).

G2 [2023b]. Showcase Videos: Site Search Engines. Information Architecture and Web Usability, WS
2023, G2. 10 Dec 2023. https://youtube.com/playlist?list=PLsp4BtuSXH9nkw7SUff_0SsnASeRGWmM1
(cited on page 17).

Huggingface [2023]. Huggingface Datasets. 2023. https://huggingface.co/datasets/ (cited on page 5).

Kaggle [2023]. Kaggle Datasets. 2023. https://kaggle.com/datasets/ (cited on page 5).

MDN [2023]. Same-origin policy. Mozilla Developer Network. 29 Nov 2023. https://developer.mozill
a.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_network_access (cited on page 4).

OpenSearch [2023a]. About Security - OpenSearch documentation. 10 Dec 2023. https://opensearch.or
g/docs/latest/security/index/ (cited on page 4).

OpenSearch [2023b]. Docker - OpenSearch documentation. 28 Nov 2023. https://opensearch.org/docs
/latest/install-and-configure/install-opensearch/docker/ (cited on pages 3–4).

OpenSearch [2023c]. Fuzziness - OpenSearch documentation. 2023. https://opensearch.org/docs/late
st/query-dsl/full-text/match/#fuzziness (cited on page 19).

OpenSearch [2023d]. OpenSearch. 2023. https://opensearch.org/ (cited on page 1).

pandas [2020]. pandas-dev/pandas: Pandas. Version latest. Feb 2020. doi:10.5281/zenodo.3509134 (cited
on page 6).

Typesense [2023a]. Downloads | Typesense. 2023. https://typesense.org/downloads/ (cited on page 3).

Typesense [2023b]. Install Typesense | Typesense. 2023. https://typesense.org/docs/guide/install-ty
pesense.html#option-2-local-machine-self-hosting (cited on page 3).

Typesense [2023c]. Typesense. 2023. https://typesense.org/ (cited on page 1).

Typesense [2023d]. Typo-Tolerance Parameters | Typesense. 2023. https://typesense.org/docs/0.25.1
/api/search.html#typo-tolerance-parameters (cited on page 19).

27

https://algolia.com/
https://kaggle.com/datasets/shivamb/netflix-shows
https://kaggle.com/datasets/shivamb/netflix-shows
https://docs.docker.com/get-started/overview/
https://nginx.com/
https://nginx.com/
https://docs.google.com/spreadsheets/d/1G1l-4-Oi-zswkyT_IvtEECdnMQlUqo92hm6VAxsr2-k/
https://youtube.com/playlist?list=PLsp4BtuSXH9nkw7SUff_0SsnASeRGWmM1
https://huggingface.co/datasets/
https://kaggle.com/datasets/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_network_access
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_network_access
https://opensearch.org/docs/latest/security/index/
https://opensearch.org/docs/latest/security/index/
https://opensearch.org/docs/latest/install-and-configure/install-opensearch/docker/
https://opensearch.org/docs/latest/install-and-configure/install-opensearch/docker/
https://opensearch.org/docs/latest/query-dsl/full-text/match/#fuzziness
https://opensearch.org/docs/latest/query-dsl/full-text/match/#fuzziness
https://opensearch.org/
http://doi.org/10.5281/zenodo.3509134
https://typesense.org/downloads/
https://typesense.org/docs/guide/install-typesense.html#option-2-local-machine-self-hosting
https://typesense.org/docs/guide/install-typesense.html#option-2-local-machine-self-hosting
https://typesense.org/
https://typesense.org/docs/0.25.1/api/search.html#typo-tolerance-parameters
https://typesense.org/docs/0.25.1/api/search.html#typo-tolerance-parameters

28 Bibliography

Typesense [2023e].What is fuzzy search? | Typesense. 2023. https://typesense.org/learn/fuzzy-search/
(cited on page 19).

Ward, Ian [2023]. JSON Lines. 10 Dec 2023. https://jsonlines.org/ (cited on page 5).

https://typesense.org/learn/fuzzy-search/
https://jsonlines.org/

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 Backend
	2.1 Self-Hosted SSE Setup
	2.1.1 Typesense Self-Hosting
	2.1.2 OpenSearch Self-Hosting

	2.2 Dataset
	2.3 Indexing
	2.3.1 Indexing for Typesense
	2.3.2 Indexing for OpenSearch
	2.3.3 Indexing for Algolia

	3 Frontend
	3.1 Integration of Typesense
	3.2 Integration of OpenSearch
	3.3 Integration of Algolia

	4 Search Feature Implementation
	4.1 Curation of Search Results
	4.2 Phrase Search
	4.3 Fuzzy Search

	5 Comparison
	5.1 Backend Setup
	5.2 Indexing
	5.3 Search
	5.4 Limits
	5.5 Analytics
	5.6 General Criteria
	5.7 Overall Observations

	6 Concluding Remarks
	Bibliography

