
/ 25

Web Performance
Optimisation

(706.041 Information Architecture and Web Usability 3VU WS 2021/2022)
Florian Marcher, Paul Höfler, Vera Tysheva, Group 3

Copyright 2021 by the author(s), except as otherwise noted.
This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence

24 November 2021

/ 25

Overview

● General
● Load Time
● Run Time
● Quick Wins

2

/ 25

Motivation

● Retaining users
● Improve conversions
● Improve user experience
● Influences page ranking

3

General

web.dev/why-speed-matters/
medium.com/@Pinterest_Engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
digitalcommerce360.com/2010/08/19/web-accelerator-revs-conversion-and-sales-autoanything/

“Pinterest reduced perceived wait times by
40% and this increased search engine traffic

and sign-ups by 15%.”

“When AutoAnything reduced page
load time by half, they saw a boost of

12% to 13% in sales”

http://web.dev/why-speed-matters/
http://medium.com/@Pinterest_Engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
http://digitalcommerce360.com/2010/08/19/web-accelerator-revs-conversion-and-sales-autoanything/
https://medium.com/@Pinterest_Engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
https://medium.com/@Pinterest_Engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
https://www.digitalcommerce360.com/2010/08/19/web-accelerator-revs-conversion-and-sales-autoanything/
https://www.digitalcommerce360.com/2010/08/19/web-accelerator-revs-conversion-and-sales-autoanything/
https://www.digitalcommerce360.com/2010/08/19/web-accelerator-revs-conversion-and-sales-autoanything/

/ 25

Motivation

4

General

smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/

https://smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/

/ 25

Response Times

● 0 to 16 ms: smooth response (10ms for app 6ms for browser draw).
● < 100 ms: immediate response, feeling of action → reaction.
● 100 ms to 1 s: feel of progress, longer tasks like loading page.
● ≥ 1 s: users lose focus.
● ≥ 10 s: users are frustrated, might not come back.

Users react to delay with annoyance

5

General

web.dev/rail/

http://web.dev/rail/

/ 25

Planning and Metrics

● Run performance tests regularly.
● Goal: Be at least 20% faster than your fastest competitor.
● Gather performance data:

○ Synthetic
○ Real user monitoring

● Choose build tools and framework:
○ Lightweight vs bloated

● Client vs Server side rendering.

6

General

smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/

http://smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/

/ 25

Important Milestones

● First Contentful Paint (FCP)
○ Loading start until first rendered parts of content

● Time to Interactive (TTI)
○ Loading start until website becomes interactive (reacts to input)

● Cumulative Layout Shift (CLS)
○ Movement of objects after initial display

■ Can be misused in dark patterns

Are all important in Google's ranking algorithm

7

General

web.dev/cls/ web.dev/fcp/ web.dev/tti/
ingosteinke.medium.com/optimizing-speed-and-usability-for-googles-core-web-vitals-9db93606d335

http://web.dev/cls/
http://web.dev/fcp/
http://web.dev/tti/
http://ingosteinke.medium.com/optimizing-speed-and-usability-for-googles-core-web-vitals-9db93606d335

/ 25

Performance Budget

● Predefined set of limits on metrics that affect site performance.

● Quantity-based:
○ Size of files, number of resources.

● Timing-based:
○ First contentful paint, time to interactive.

● Rule-based:
○ Performance scores like WebPage or Lighthouse.

Ideally, use all of them.

8

General

web.dev/performance-budgets-101/
smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/

http://web.dev/performance-budgets-101/
http://smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/

/ 25

Performance Tools

● Chrome Dev Tools
○ Simulates throttling
○ View paint events in real-time
○ Monitor resource usage

● Lighthouse
○ Included in Chrome
○ Simulated mid range device with slow connection
○ Reports load and response times
○ Gives suggestions

● WebPageTest
○ Can use different devices

9

General

web.dev/rail/

http://web.dev/rail/

/ 2510

Lighthouse demo
https://youtu.be/QkHjxY77-bs

https://youtu.be/QkHjxY77-bs

/ 25

Load Time

11

/ 25

Use Minification and Compression

12

● Turn on minification.
● Turn on Compression.
● Disable for:

○ Compressed Images/PDFs: doesn’t improve size by much if already compressed
○ Files <= 1500 bytes: transmitted in a 1500 byte packet anyways (size of MTU)

● Gzip most widespread
○ Brotli (by Google) is getting more common

Load Time

blog.hubspot.com/website/gzip-compression
computerworld.com/article/2693941/why-it-doesn-t-make-sense-to-gzip-all-content-from-your-web-server.html

http://blog.hubspot.com/website/gzip-compression
http://computerworld.com/article/2693941/why-it-doesn-t-make-sense-to-gzip-all-content-from-your-web-server.html

/ 25

Optimize JavaScript Loading
Load Time

Souders, Steve. Even faster web sites: performance best practices for web developers. " O'Reilly Media, Inc.",
2009.

developers.google.com/web/fundamentals/performance/optimizing-javascript/tree-shaking#what_is_tree_shakingv 13

● Browsers block rendering and downloading on JS download and execution.
● No parallel JS file download by default.

○ To preserve execution order.

● Use tree shaking to eliminate dead code.
○ Technique to only import what’s needed and eliminate from code on build.

http://developers.google.com/web/fundamentals/performance/optimizing-javascript/tree-shaking#what_is_tree_shakingv

/ 25

Optimize JavaScript Loading
Load Time

14

● Browsers block rendering and downloading on JS download and execution
● No parallel js file download by default

○ To preserve execution order

/ 25

PRPL Pattern

● Push critical resources using preload
● Render initial page
● Pre-cache non-critical resources
● Lazy-load remaining resources on demand

Load Time

web.dev/rail/
Souders, Steve. Even faster web sites: performance best practices for web developers. " O'Reilly Media, Inc.",
2009. 15

http://web.dev/rail/

/ 25

Async vs Defer

● Async
○ Loads and executes scripts in the background.
○ Ignores script order
○ Non-blocking
○ For independent scripts

● Defer
○ Moves scripts to the bottom of the page.
○ Retains script order
○ Executes after DOM is ready but before DOMContentLoaded event.

● Page should be usable without scripts

Load Time

javascript.info/script-async-defer 16

http://javascript.info/script-async-defer

/ 25

HTTP 2/3

● Make sure it is turned on

● Both vastly improve performance

● HTTP3 Improves performance for slow networks.

● HTTP3 QUIC instead of TCP

○ UDP-based

○ Suffers less from packet loss.

○ Multiple streams

○ Connection migration

17

Load Time

smashingmagazine.com/2021/08/http3-core-concepts-part1/
rfc-editor.org/rfc/rfc9000.html

http://smashingmagazine.com/2021/08/http3-core-concepts-part1/
http://rfc-editor.org/rfc/rfc9000.html

/ 25

Caching Strategy

● Use a far-future EXPIRES header (where applicable).

○ Images and Scripts don’t change often.

● Service worker interface comes with a Cache interface.

○ Cache is only cleared if browser exceeds it’s storage limit. Updates are your responsibility.

18

Load Time

developer.mozilla.org/en-US/docs/Web/HTTP/Caching
developers.google.com/web/ilt/pwa/caching-files-with-service-worker

http://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
http://developers.google.com/web/ilt/pwa/caching-files-with-service-worker

/ 25

Optimizing Images

● Images are half of the size of typical websites.
● Lossy

○ JPEG
○ Reduces image quality

● Lossless
○ PNG, GIF
○ Remove metadata
○ Use Tools

● Use new formats like WebP, AVIF or JPEG XL.
○ Performance vs support

Load Time

developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types 19

http://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types

/ 25

Static Files and Prerendering

● Prefer static files, they are fastest to serve.
○ Can be generated at build → Static Rendering

● Prerendering is capturing an apps initial state in static HTML and using JS to
fill in the gaps.

● The more is static (not generated on server or browser) the faster the page
appears.

Load Time

developers.google.com/web/updates/2019/02/rendering-on-the-web 20

http://developers.google.com/web/updates/2019/02/rendering-on-the-web

/ 25

Run Time

21

/ 25

JavaScript Performance

● Focus on “expensive” parts → use profiling
● Remove unused JavaScript
● Avoid memory leaks → use profiling
● Save repeatedly used DOM elements in variables

22

Run Time

nodesource.com/blog/improve-javascript-performance/

http://nodesource.com/blog/improve-javascript-performance/

/ 25

Selective use of Animation

● Page feels faster if done correctly.
○ Slower if incorrectly

● Via SVG, video, JavaScript or CSS
○ Limited by file size or CPU performance.

23

Run Time

developer.mozilla.org/en-US/docs/Web/Performance/Animation_performance_and_frame_rate

http://developer.mozilla.org/en-US/docs/Web/Performance/Animation_performance_and_frame_rate

/ 25

RAIL

● User-centric performance model.
● Response - Animation - Idle - Load
● Goals: Key performance metrics related to UX; persistent since based on

human perception.
● Guidelines: Recommendations to achieve goals, might be specific to

hardware, therefore change over time.

24

Run Time

web.dev/rail/

http://web.dev/rail/

/ 25

Quick Wins

● Audit first.
● Use static files or prerender.
● Check cache, compression and resource hints are setup properly.
● When using pre-built JS frameworks, choose wisely.
● Optimize images.
● Trim, optimize, minify, defer and lazy-load assets.

25smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/#quick-wins

http://smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/#quick-wins

/ 25

Thank you

26

