
Responsive Web Tables

Mirza Kabiljagic, Stefan Rajinovic, Aleksandar Stojicic, Inti Gabriel Mendoza Estrada

Institute of Interactive Systems and Data Science (ISDS),
Graz University of Technology

A-8010 Graz, Austria

11 Dec 2019

Abstract
Responsive techniques are techniques used in web design which enable better rendering of
web pages, tables, and other elements. With better rendering, it is meant as a rescaling
of the resolution of the device used to open the specific website. When using responsive
techniques, it doesn’t matter which device is used to look at a website, the website should
look good.
It is mostly a combination of fluid grids, which enables the elements of a page to be sized in
relative units, such as percentages, rather than using pixels or points, flexible images, same
thing as in fluid grids, media queries, which enable using many CSS tricks or style rules and
responsive layout which can automatically adapt, resize, and adjust to any device screen size,
be it a laptop, mobile phone or tablet.
Responsive tables are tables which use the approach mentioned above, which allow them
to be more flexible and complex, without compromising its usability while adding a better
aesthetically pleasing look. In this survey report, we will provide a good overview of what
responsive techniques, responsive tables, and good table designs are, and, finally, recommend
the best technique combination, in our opinion, to use.

© Copyright 2019 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

List of Listings v

1 Introduction 1
1.1 How to achieve Responsive Web Design . 1
1.2 Media queries . 1
1.3 Fluid Grid Layouts . 2
1.4 Flexible images and media . 3

1.4.1 Relative measurements . 3
1.4.2 Cropping . 3

2 HTML Tables 5
2.1 Structure of Tables . 5

3 Good Table Design 7
3.1 Alternate row highlighting . 7
3.2 Current Row Highlighting . 7
3.3 Expandable Areas . 8
3.4 Pagination (With Sort and Search) . 9

4 Responsive Tables 13
4.1 Horizontal Scroll . 13
4.2 Fixed Header . 16
4.3 Flip Scroll . 17
4.4 User Resizeable Columns . 19
4.5 Long Two Column . 19

5 Recommendation 23
5.1 Recommendation . 23

Bibliography 25

i

ii

List of Figures

1.1 Relative Image Dimensions . 3
1.2 Picture with original size . 4
1.3 Picture when cropped . 4
1.4 Image Cropping . 4

3.1 Alternate Row Highlighting . 8
3.2 Current Row Highlighting . 9
3.3 Expandable Areas . 10
3.4 Expandable Areas . 11
3.5 Pagination with sort option . 11
3.6 Pagination with search option . 12

4.1 Before reponsive . 14
4.2 After responsive . 15
4.3 Horizontal Scroll . 16
4.4 Fixed Header . 18
4.5 Flip Scroll . 19
4.6 User Resizeable Columns using only HTML and CSS 20
4.7 User Resizeable Columns using JS (jQuery) . 21
4.8 Long Two Column . 22

5.1 Recommendation Techniques 1 . 24
5.2 Recommendation Techniques 2 . 24
5.3 Recommendation Techniques 3 . 24

iii

iv

List of Listings

1.1 Media Queries . 2
1.2 Media Queries 2 . 2
1.3 Image Cropping . 4

2.1 Structure . 6

3.2 Current Row Highlighting . 7
3.1 Alternate Row Highlighting . 8
3.4 Expandable Area After. 8
3.3 Expandable Area Before . 9
3.5 Expandable Area . 10
3.6 Pagination . 11

4.1 Media Queries on Tables . 14
4.2 Horizontal Scroll . 16
4.3 Fixed Header . 17
4.4 Flip Scroll . 18
4.5 User Resizeable Columns . 20
4.6 User Resizeable Columns 2 . 20
4.7 Long Two Column . 22

v

vi

Chapter 1

Introduction

Going back, at the starting point of web development, its creators and designers have not had the need
to think about the look and design of the page, because back then, their users and clients would mostly
access the site via the same device, that being a personal desktop computer which would mostly share
the same resolution and display size. That means that they mostly needed to design and work around the
same concept. Also, they didn’t need to think about things like what if an user entered the site with this
device or this, so they could basically use static and fixed positioning of elements.

However, todays’ technologies, be it the mobile industry or technical industry in general, the devices
have come a long way, and are being worked on really fast. What does that mean is that the programmers
and designers need to consider that people will have different ways of using and browsing their pages,
which require different approaches to design their web pages. Nowadays, the clients and users have a
broad list of devices, which they can use to access a web page, be it a tablet, mobile phone, laptop and
even TVs [ITU 2019].

Basically, the most important thing is to make the web pages’ user interface as friendly as possible, so
that the user does not lose much time navigating around. And with that being said, web programmers
need to automatically think about making the web pages in that way, while they are being accessed from
those different devices mentioned [Sharki and Fisher 2013].

Responsive Web Design is an approach, or more rather a technique, which is used to construct a
self-adapting web page, meaning that it adapts, resizes, shrink and changes its’ form in any way needed
to perfectly fit the web-accessing device used to visit it [Negi 2018].

1.1 How to achieve Responsive Web Design
If a programmer wants his web site to be responsive, he has to use following techniques:

• Media queries

• Flexible images and media

• Fluid grid layouts

1.2 Media queries
Media queries are very important because with them it is possible to specify with what device the web
page is being accessed. The query usually is made of a media type, and some conditions which can check
if the media type has some special property [Mohamed et al. 2015].

Basically it allows defining specific CSS rules, depending on the device used. From the example in
Listing 1.1, with the help of the parameter screen the media type was specified and using max-width the

1

2 1 Introduction

1 % An example of a media query, where one can say that for a screen of size 600px or
less, the

2 % background color is olive:
3
4 @media screen and (max-width: 600px) {
5 body {
6 background -color: olive;
7 }
8 }

1 % An example of using display: none:
2 <!DOCTYPE html>
3 <html>
4 <head>
5 <style>
6 h1.none {
7 display: none;
8 }
9 </style>
10 </head>
11
12 <body>
13 <h1 class="none">This will not be displayed </h1>
14 </body>
15 </html>

condition was determined which affects the device of the user. Now, there are many different conditions
which can be used, and they are really helpful, because with them it is possible to adjust display settings
for every device there is.

For example, if the user is entering the website with his phone, it can be automatically said that an
image should have a lower resolution, thus adjusting it better for his screen and saving some bandwith.

Another example would be using display:none with which some content can completely be hidden
that should not be displayed.

If this Listing 1.2 was ran in the browser, the header would not be seen, because it was decided to not
be shown. If display:none was changed to display:block, our header would be visible.

Include a list of all the relevant papers and resources you have found and mark those you have chosen
to focus on. Make sure all the papers and resources you found or were given appear in the bibliography.

1.3 Fluid Grid Layouts
Normally, websites are constructed in a layout which is grid-built, because they are easier to handle in
different kind of devices. Also what is specific for that kind of layout is that it is built using divs, HTML
tables and so on. Now, on top of that responsive web design comes in play[Frain 2017]. With it, it is
possible to use percentage-based element sizing which is easier than using pixels.

According by (Abdulrehman,2015) a flexible grid-layout is one of the foundations of responsive design.
Using the term "grid" does not mean necessarily that a grid framework needs to be used. What it means
is that specific CSS tricks are used for positioning. Also, he suggest that using pixels for the measurement
unit should be stopped, because pixels can vary.

For example, on one device they can be one point or dot, on another device it can be a few more, and

Flexible images and media 3

Figure 1.1: Relative Image Dimensions. [Image taken from [research paper] , author was asked for permission.]

therefore unreliable. So, what needs to be done is that, if pixels are used, they should be converted using
a formula stated by (Marcotte, 2010) in Dan Cederholm’s book named "Handcrafted CSS":

Target ÷ Context = Result (1.1)

It is asserted by (Pettit, 2012) that, to use this formula, the context of the element needs to be divided
by the target element.

1.4 Flexible images and media
With this approach, any type of media,images depending on the screen resolution will resize,collapse,crop
and adjust accordingly to it, and to achieve this it is possible to use the same thing mentioned in the
previous section, relative units, if the screen becomes too small then hide the image completely or by
cropping some parts of the image, again in the case if the screen becomes too small[HTML5 Tutorial
2019].

1.4.1 Relative measurements
Instead of using pixels,relative dimensions can be used, percentage based. So instead of specifying the
view and dimensions in pixels, one can specify for example 60%, which would result in resizing or
reshrinking of the image based on the resolution of the device accordingly to fill 60% of the page.

1.4.2 Cropping
Another option is cropping, which crops the picture to a certain width with the help of CSS.

In Figure 1.4, we see the result of tweaking the image a bit with just a few CSS commands. It enables
us to crop the picture. If someone is browsing the website with a smaller device, the image does not have
to be hidden, just its size is changed.

https://www.researchgate.net/publication/308182637_Responsive_Web_Design_Techniques

4 1 Introduction

Figure 1.2: Picture with original size

Figure 1.3: Picture when cropped

Figure 1.4: Image cropping. [Photo taken by author.]

1 % An example of a media query, where one can say that for a screen
2 % of size 850px or less, the background is black:
3 figure{
4 width:18.75rem; /*container -width*/
5 overflow:hidden; /*hide bounds of image */
6 margin:0; /*reset margin of figure tag*/
7 }
8
9 figure img{
10 display:block; /*remove inline-block spaces*/
11 width:100%; /*make image streatch*/
12 }

Chapter 2

HTML Tables

In case of having too much data to display, or data which is inherently better in a grid, HTML tables are
the best solution available. Before, tables have been used mostly for the layout of HTML websites (and
is now an example of bad website development pracices) mainly due to two reasons:

– Semantically, it is wrong.

– Tables aren’t as adaptable and flexible as divs’

2.1 Structure of Tables
The basic structure of an HTML table starts with the <table> tag. It is the starting point for constructing
a table. Now, HTML tables consist of columns and rows, like normal tables. For rows, the tag <tr> is
used, whereas for table header <th> tag is used. Normally, table headers are positioned in the center and
are bold. For table cells <td> tag is used [Wood 2019].

Now, there exist more tags which can be used for HTML5 tables:

– <thead> - Table header, it is used to point out single or multiple rows of a table, which do not
contain table data but column labels [Coyier 2018].

– <tbody> - Table body, it is used to point out <tr> elements. Position this tag always after
<thead>, but it can also come after or before <tfoot> [Coyier 2018].

– <tfoot> - Table footer, it is used to point out single or multiple <tr> elements where those
elements are presenting an overview of the data in the table [Coyier 2018].

– <caption> - Table caption, as the name already says, can be used to specify table caption. Can be
put on the bottom of the CSS document.

– <col> - While using col and some other keyword, for example, align, it is possible direct the
alignment of text in the table. There are other keywords whom can be used to adjust colors, width
and many other things of table columns.

An example HTML table code can be seen in Listing 2.1.

5

6 2 HTML Tables

1 % An example of an HTML Table which demonstrates information about cars:
2 <!DOCTYPE html>
3 <html>
4 <head>
5 <title>Best Cars 2019</title>
6 </head>
7 <body>
8 <table class="table table-bordered table-hover table-condensed">
9 <thead>
10 <tr>
11 <th title="Field #1">Car</th>
12 <th title="Field #2">Manufacturer </th>
13 <th title="Field #3">Engine Size</th>
14 <th title="Field #4">Cylinders </th>
15 <th title="Field #5">Horsepower </th>
16 <th title="Field #6">Torque </th>
17 <th title="Field #7">Compresion Ratio</th>
18 <th title="Field #8">Miles per gallon </th>
19 <th title="Field #9">Price</th>
20 </tr>
21 </thead>
22 <tbody>
23 <tr>
24 <td>2019 Acura RDX</td>
25 <td>Acura</td>
26 <td>2.00L</td>
27 <td align="right">4</td>
28 <td align="right">272</td>
29 <td align="right">280</td>
30 <td>9.8:1</td>
31 <td align="right">28</td>
32 <td>€33,600.00</td>
33 </tr>
34 <tr>
35 <td>2019 Ford Ranger </td>
36 <td>Ford</td>
37 <td>2.30L</td>
38 <td align="right">4</td>
39 <td align="right">270</td>
40 <td align="right">310</td>
41 <td>10.0:1</td>
42 <td align="right">21</td>
43 <td>€21,800.00</td>
44 </tr>
45 </tbody>
46 </table>
47
48 </body>
49 </html>

Chapter 3

Good Table Design

Wewill discuss certain conventions that are widely regarded as “Good Table Design”. These conventions
are generally neat little CSS tricks which serve to aesthetically improve the look of a table and in most
cases also add to the effectiveness and efficiency of tables. All tables must incorporate at least one of the
following conventions.

3.1 Alternate row highlighting
When presented a table with a lot of entries, it can be hard to look at. Scrolling through numerous rows
can be frustrating. With this CSS trick, it can be a bit easier, at least for the eyes, if nothing else. The
idea is to color every even row, while leaving the odd ones intact. Implementing this techniques requires
only two lines of CSS, and is objectively useful. This can be seen in Listing 3.1.
An example HTML table with this technique is shown in Figure 3.1.

3.2 Current Row Highlighting
Just like in Alternate Row Highlighting, ‘walking’ through a big table one may easily become lost and
wouldn’t know in which row he is at the moment, which can be pretty stressful and overall decrease the
efficiency of the table.
With the help of some CSS, the lives of the users are made easier. This code can be seen in Listing 3.2

1 % An example of using simple CSS to highlight table rows:
2 table {
3 overflow: hidden;
4 }
5
6 tr:hover {
7 background -color: #ffa;
8 }
9
10 td, th {
11 position: relative;
12 }
13
14 td:hover::after, th:hover::after {
15 content: "";
16 position: absolute;
17 background -color: #ffa;
18 left: 0;
19 width: 100%;
20 z-index: -1;
21 }

7

8 3 Good Table Design

1 % An example of using simple CSS to color table rows:
2 table.alt tr:nth-child(even) {
3 background: #CCC
4 }
5
6 table.alt tr:nth-child(odd) {
7 background: #FFF
8 }

Figure 3.1: Alternate Row Highlighting. [Screenshot taken by the author.]

An example HTML table with this technique is shown in Figure 3.2.

3.3 Expandable Areas
Should we have any further information available about a table’s object, making the row clickable and
showing the extra information is a better alternative than trying to cram everything inside the table. In
the code snippet shown in Listing 3.3 we see how additional data in an HTML table can be implemented
[Alligator 2019].

To implement this table feature the combination of JavaScript and CSS needs to be implemented. In
the snippet codes in Listings 3.4 and 3.5, the JavaScript and CSS code can be reviewed.

1 <script type="text/javascript">
2 $(document).ready(function(){
3
4 $("#report tr:odd").addClass("odd");
5 $("#report tr:not(.odd)").hide();
6 $("#report tr:first-child").show();
7
8 $("#report tr.odd").click(function () {
9 var trToToggle = $(this).next("tr");
10 $("#report tr:not(.odd)").not(trToToggle).hide();
11 $("#report tr:first-child").show();
12 $(trToToggle).toggle();
13 $(this).find(".arrow").toggleClass("up");
14 });
15 })
16 </script>

Pagination (With Sort and Search) 9

Figure 3.2: Current Row Highlighting. [Screenshot taken by the author.]

1 <tr>
2 <td>2019 Acura RDX</td>
3 <td>Acura</td>
4 <td style="text-align: right">2.0</td>
5 <td style="text-align: right">4</td>
6 <td style="text-align: right">272</td>
7 <td style="text-align: right">280</td>
8 <td style="text-align: right">9.8:1</td>
9 <td style="text-align: right">28</td>
10 <td style="text-align: right">33,600.00</td>
11 </tr>
12 <tr>
13 <td colspan="5">
14 <h4>Additional information about the car</h4>
15
16
17 Acura RDX
18
19 Acura RDX official webpage
20
21
22 </td>
23 </tr>
24 <tr>

An example HTML table with this technique before a row is clicked is shown in Figure 3.3.

An example HTML table with this technique after a row is clicked is shown in Figure 3.4.

3.4 Pagination (With Sort and Search)
The amount of data increases every second, over 2.5 quintillion bytes of data are made every day and
there is also estimation that in 2020 will be created 1.7MB of data in every second for each person in
the world[Ahmad 2018]. Tables are one of the best mediums for displaying large sets of data efficiently.
Features can be added to tables to increase efficiency even more. For example, if a table is too long, it
can be divided into ‘pages’. Each page houses a certain amount of rows. The user then can ‘flip’ through
these pages as page navigation is also implemented.

Furthermore, it is possible to sort the table by column (in ascending/descending and alphabetical order),
and search for an element in the table. This solution works for following browsers:

– Google Chrome

– Mozzila Firefox

– Internet Explorer

10 3 Good Table Design

1 #report {
2 border-collapse:collapse;
3 }
4 #report h4 {
5 margin:0rem;
6 padding:0rem;
7 }
8 #report img {
9 float:right;
10 }
11 #report ul {
12 margin:0.625rem 0 0.625rem 2.5rem;
13 padding:0rem;
14 }
15 #report th {
16 background:#7CB8E2 repeat-x scroll center left;
17 color:#fff;
18 padding:0.4375rem 0.9375rem;
19 text-align:left;
20 }
21 #report td {
22 background:#C7DDEE none repeat-x scroll center left;
23 color:#000;
24 padding:0.4375rem 0.9375rem;
25 }
26 #report tr.odd td {
27 cursor:pointer;
28 }
29 #report div.arrow {
30 background:transparent url(arrows.png) no-repeat scroll 0rem -1rem;
31 width:1rem;
32 height:1rem;
33 display:block;
34 }
35 #report div.up {
36 background -position:0rem 0rem;
37 }

Figure 3.3: Expandable Areas, before. [Screenshot taken by the author.]

Pagination (With Sort and Search) 11

Figure 3.4: Expandable Areas, after. [Screenshot taken by the author.]

Figure 3.5: Pagination with sort option. [Screenshot taken by the author.]

– Opera

– Microsoft Edge

For the implementation plug-in for the jQuery Javascript library called DataTables is used [SpryMedia
2019]. This can be seen in Listing 3.6.

1 % An example of using Javascript plugin DataTable():
2 %Include these two files in order to include additional advanced features to any

HTML table
3 %cdn.datatables.net/1.10.20/css/jquery.dataTables.min.css
4 %cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js
5 $(document).ready(function(){
6 $(’#myTable ’).dataTable(); //this plugin provides searching , sorting and

pagination
7 });

Table is initilaized with "myTable" id and this id is used in ready function() to assign dataTable
funcionality to our HTML table instance[Tompsett 2018]. An example HTML table with this technique
when using the sort feature on the Price column is shown in Figure 3.5

12 3 Good Table Design

Figure 3.6: Pagination with search option. [Screenshot taken by the author.]

An example HTML table with this technique when using the search feature is shown in Figure 3.6.

Chapter 4

Responsive Tables

Due to the increasing amount of screens and their varying shapes, sizes, and developers’ space allocation
when designing and implementing tables, responsive table techniques have been ‘developed’ by manip-
ulating the table’s columns and rows to provide an optimal experience for users across most mediums. It
means the row and columns can be repositioned, resized, collapsed, minimized, etc..
Data tables can contain many information, which makes displaying that data quite messy and hard to

look at. So by using responsive design, a big favor is done to the clients, by adjusting the table according
to their devices. One idea would be to minimize the table, but if the user is looking at the table from his
mobile device, he would have to zoom in, which is not that useful to him, because then again he would
need to scroll to view the whole table [Alligator 2019].
As seen in Figure 4.1, both options do not really look nor perform well. So, by using some simple CSS

it is possible to fix that problem. With the help of the mentioned media queries, it is possible to specify
for which device sizes, which settings should be used.
And now, the end result is seen in the Figure 4.2.
Some of the most popular responsive techniques are:
– Hidden Columns - Selected by User

– Horizontal Scroll

– Fixed Header

– Flip Scroll

– User Resizeable Columns

– Long Two Column
In the following sections we will try to give a brief but detailed description of what exactly each

technique consists of, as well as the reason to include this techniques on tables, and the code required to
implement such techniques.

4.1 Horizontal Scroll
When the allocated space is too small - horizontally, instead of hiding it, a horizontal scroll bar (just for
the table) is created. The user can then scroll away.
Horizontal Scrolling represents a technique that resizes the table into columns at small screen resoultion

[Bushell 2016]. This is different from viewport scrolling as we scroll only through the table.
It is very useful technique when presenting large data sets with identifiers in the first column. Then is

very easy for every user to compare data content with multiple identifiers[Coyle 2017].

13

14 4 Responsive Tables

Figure 4.1:
[How an unresponsive table looks like. Images from [here]. Under the free license of CSS tricks]

1 % An example of using simple CSS with media queries on how to
2 % achieve Responsive Design:
3
4 @media
5 only screen and (max-width: 760px),
6 (min-device-width: 768px) and (max-device-width: 1024px) {
7
8 /* Force table to not be like tables anymore */
9 table, thead, tbody, th, td, tr {
10 display: block;
11 }
12
13 /* Hide table headers (but not display: none;, for accessibility) */
14 thead tr {
15 position: absolute;
16 top: -624.9375rem;
17 left: -624.9375rem;
18 }
19
20 tr { border: 0.0625rem solid #ccc; }
21
22 td {
23 /* Behave like a "row" */
24 border: none;
25 border-bottom: 0.0625rem solid #eee;
26 position: relative;
27 padding-left: 50%;
28 }
29
30 td:before {
31 /* Now like a table header */
32 position: absolute;
33 /* Top/left values mimic padding */
34 top: 0;
35 left: 0.375rem;
36 width: 45%;
37 padding-right: 0.625rem;
38 white-space: nowrap;
39 }
40 }

https://css-tricks.com/responsive-data-tables/
 https://css-tricks.com/license//

Horizontal Scroll 15

Figure 4.2:
[How a responsive table looks like. Images from [here]. Under the free license of CSS tricks]

This solution works for following browsers:

– Google Chrome

– Mozzila Firefox

– Internet Explorer

– Opera

– Microsoft Edge

It is impossible to find one size that fits all solution. Data comparing is very difficult on the small
screens. There are a lot of possible workarounds for this issue, but no one can solve this problem [Bushell
2016]. Our implementation of horizontal scrolling creates table elements scrollable, but also can not
solve the issue to the end[Bushell 2016].

The code required to implement this technique on a table is shown in Listing 4.2.

This CSS code represents CSS class .rtable used in the case when container is not resized. With
display: inline-block all items are listed horizontally instead of vertically. vertical-align property
maintains how elements set next to each other in a line. The overflow property determines whether
to crop content or to add scroll bars (along the x-axis) when a table’s content is too big to satisfy some
screen resolution. We can use white-space: nowrap property as optional for small cell values. CSS

https://css-tricks.com/responsive-data-tables/
 https://css-tricks.com/license//

16 4 Responsive Tables

1 .rtable {
2 display: inline-block;
3 vertical -align: top;
4 max-width: 100%;
5
6 overflow -x: auto;
7
8 // optional - looks better for small cell values
9 white-space: nowrap;
10
11 border-collapse: collapse;
12 border-spacing: 0;
13 }

Figure 4.3: Horizontal Scroll. [Screenshot taken by the author.]

border properties are used to control borders into a table[Bushell 2016].

An example HTML table with this technique is shown in Figure 4.3.

4.2 Fixed Header
When the table is vertically long, the table’s header is fixed to the top of the table’s view. As we scroll
down, the table’s header is kept always visible. It is very useful to have the fixed header (first row
containing the header cells) fixed on the top of the table, when presenting tables with a particularly larage
data set. This helps users to quickly determine what every column identify rather than need to scroll back
to the top of the table every time.

Fixed Header provides information that allows the user to always know in what column the cell the
user is looking at is in. This is very effective feature that makes our life easier [Coyle 2017]. An
implementation can be seen in Listing 4.3. This solution works for following browsers:

Flip Scroll 17

1 .fixedHeader tbody {
2 display: block;
3 overflow: auto;
4 width: 100%;
5 }
6
7 .fixedHeader thead tr {
8 display: table;
9 width: 100%;
10 table-layout: fixed;
11 }
12
13 .fixedHeader thead, .fixedHeader tbody tr {
14 display: table;
15 width: 100%;
16 table-layout: fixed;
17 }
18
19 .fixedHeader thead {
20 width: calc(100% - 0.6em)
21 }
22
23 .fixedHeader td {
24 width: 100%;
25 }

– Google Chrome

– Mozzila Firefox

– Internet Explorer

– Opera

– Microsoft Edge

<tbody> element is determined with the type of rendering box. With overflow: auto, a scrollbar
will appear along y-axis. All <thead> and <tbody> rows will behave as table elements. Fixed table
layout algorithm is used to control table and column widths. Width for almost every table element is
static, just the header has non-static width [Frederic 2019]. The width of header is determined with the
calc() function to allow responsiveness [W3Schools 2019a].

An example HTML table with this technique is shown in Figure 4.4.

4.3 Flip Scroll
This technique is useful for an object-based table; one where each row is populated by a single ‘object’
where each column represents a different feature of the object. If all features – columns – cannot be seen
at once, it is sometimes more desireable to be able to show all features of an object rather than a good
amount of (incomplete) features for a good amount of objects.

Rather than having the user scroll through features, the user is now able to scroll through objects
horizontally instead. This is the result of transposing the table. The first column will now house the
(previously column) headers and each column will be devoted to an object, rather than each row. Flip
scroll also ‘promises’ to keep the table in the allocated space – by allowing table horizontal scrolling.

An implementation can bee seen in Listing 4.4. This solution works for following browsers:

18 4 Responsive Tables

Figure 4.4: Fixed Header. [Screenshot taken by the author.]

1 table.flipscroll{
2 width: 100%;
3 overflow -x: auto;
4 }
5
6 table.flipscroll tbody tr {
7 display: inline-block;
8 vertical -align: top;
9 }
10
11 table.flipscroll tbody {
12 display: block;
13 width: auto;
14 position: relative;
15 overflow -x: auto;
16 white-space: nowrap;
17 }

– Google Chrome

– Mozzila Firefox

– Internet Explorer

– Opera

– Microsoft Edge

Setting width: 100% and overflow-x: auto makes the table horizontally scrollable and stick
to the allocated space. The trick is setting the attribute display: inline-block on the tbody tr
HTML tag and white-space: nowrap on the tbody HTML tag [Elvery 2019].

Figure 4.5 represents an HTML table with Flip Scroll.

User Resizeable Columns 19

Figure 4.5: Flip Scroll. [Screenshot taken by the author.]

4.4 User Resizeable Columns
This technique empowers the user quite significantly. As the title suggests, the user is able to manipulate
the size of a table’s columns.
This technique is useful when the user is immune to space limitation penalties the table might have on

most other users. For example, if a user has a screen big enough that space between columns is wasted to
keep column sizes consistent, being able to resize this column to bring other columns into view is highly
desireable.
User Resizeable Columns allows the user to tailor the table’s experience to his/her own preferences.

There are two possible solutions. The solution using only CSS can be seen in Listings 4.5 and the solution
using JQuery can be seen in Listing 4.6. Both work for following browsers:
– Google Chrome

– Mozzila Firefox

– Internet Explorer

– Opera

– Microsoft Edge
Encapsulating every header cell (or every single cell) with a <div> tag allows CSS to enable resize-

ability by setting the attribute resize: horizontal to these divs [W3Schools 2019b].
Figure 4.6 represents an HTML table with User Resizeable Columns using only HTML and CSS.
The trick to use this technique using JQuery is calling the resizeableColumns() on the table of your

choice [Jo-Geek 2019]. The resulting image can be seen in Figure 4.7.

4.5 Long Two Column
Just like Flip Scroll, this technique is useful for an object-based table; one where each row is populated
by a single ‘object’ where each column represents a different feature of the object.
Rather than having the user scroll through features, the user is now able to scroll through objects

vertically instead. This is the result of transposing the table. The first column will now house the
(previously column) headers and the second column will house the data previously housed in the first row.

20 4 Responsive Tables

1 <thead>
2 <tr>
3 <th title="Car">
4 <div class = "resizecell">Car</div>
5 </th>
6 <th title="Manufacturer">
7 <div class = "resizecell">Manufacturer </div>
8 </th>
9 <th title="Engine Size(L)">
10 <div class = "resizecell">Engine Size(L)</div>
11 </th>
12 [...]
13 </tr>
14
15 </thead>
16 .resizecell {
17 resize: horizontal;
18 overflow: auto;
19 width: 100%;
20 hyphens: auto;
21 }
22 <style>
23
24 </style>

Figure 4.6: User Resizeable Columns using only HTML and CSS. [Screenshot taken by the author.]

1 ~/js/jQuery.resizableColumns.js
2
3 $(function(){
4 $(’.rcl’).resizeableColumns();
5 });

Long Two Column 21

Figure 4.7: User Resizeable Columns using JS (jQuery). [Screenshot taken by the author.]

This creates a ‘minitable’ for the (previously) first row. For the next object (and row), another ‘minitable’
is created like with the first one and then appended below. This approach creates a ‘minitable’ for each
object and appends it to the previous object.

As the name suggest, you end up with a long table of 2 columns, the first of which is ’always the same’.
Unlike Flip scroll, it does not keep the table in the allocated space, unless you set vertical scrolling. This
solution works for following browsers:

– Google Chrome

– Mozzila Firefox

– Internet Explorer

– Opera

– Microsoft Edge

As seen in Listing 4.7, trick is setting the table’s elements to display: block and the <td> tag’s
attribute to position: relative [CSS-Tricks 2019]. Figure 4.8 shows an HTML table with Long
Two Column technique applied to it.

22 4 Responsive Tables

1 table, thead, tbody, th, td, tr {
2 display: block;
3 }
4
5 td {
6 /* Behave like a "row" */
7 border: none;
8 border-bottom: 0.0625rem solid #eee;
9 position: relative;
10 padding-left: 50%;
11 }
12
13 td:before {
14 /* Now like a table header */
15 position: absolute;
16 /* Top/left values mimic padding */
17 top: 0;
18 left: 0.375rem;
19 width: 45%;
20 padding-right: 0.625rem;
21 white-space: nowrap;
22 }

Figure 4.8: Long Two Column. [Screenshot taken by the author.]

Chapter 5

Recommendation

5.1 Recommendation
Responsive tables must be able to efficiently and effectively display data. It is only through a combination
of good table design and responsive techniques one is able to achieve this.

For good table design, it is imperative that you include Alternate Row Highlighting. This is a very
simple technique that works on every browser and is not only helpful to the user but to the developer as
it adds positively to the aesthetics.

For a “Jack of all trades” approach, we suggest the following responsive techniques: Long TwoColumn,
and Fixed Header. You are able to apply this for the 3 main screen sizes: PC, tablet, and phone. Being
able to apply Long Two Column to phone-sized screens (or tablets in vertical mode) and leave Fixed
Header on the remaining two sizes (PC and tablets in horizontal mode) automatically eliminates one of
the 3 sizes you have to take care of.

Another thing to keep in mind is to attach the vertical scrollable feature of Fixed Header to the Long
Two Column. This ensures that the space the table is taking up is exactly the one allocated to it. It goes
without saying that if the table is too wide (horizontally), it should be horizontally scrollable.

Figure 5.1 shows these techniques working together. As you scroll through the table, notice the Fixed
Header Technique in Figure 5.2. For small-sized screens, the technique that would “kick in” is shown in
Figure 5.3. Notice the ‘creeping’ second ‘minitable’ in the bottom part.

23

24 5 Recommendation

Figure 5.1: Recommendation Techniques 1. [Screenshot taken by the author.]

Figure 5.2: Recommendation Techniques 2. [Screenshot taken by the author.]

Figure 5.3: Recommendation Techniques 3. [Screenshot taken by the author.]

Bibliography

Ahmad, Irfan [2018]. How Much Data Is Generated Every Minute. 15 Jun 2018. https : / / www .
socialmediatoday.com/news/how- much- data- is- generated- every- minute- infographic- 1/525692/

(cited on page 9).

Alligator [2019]. Implementing A Pure CSS Collapsible. 2019. https://alligator.io/css/collapsible/
(cited on pages 8, 13).

Bushell, David [2016].CSS only Responsive Tables. 04Mar 2016. https://dbushell.com/2016/03/04/css-
only-responsive-tables/ (cited on pages 13, 15–16).

Coyier, Chris [2018]. Responsive Data Tables. 09 Jun 2018. https://css-tricks.com/responsive-data-
tables/ (cited on page 5).

Coyle, Andrew [2017]. Design better data tables. 07 May 2017. https://uxdesign.cc/design-better-
data-tables-4ecc99d23356 (cited on pages 13, 16).

CSS-Tricks [2019]. Responsive Table Demo. 10 Dec 2019. https://codepen.io/team/css-tricks/pen/
wXgJww (cited on page 21).

Elvery, Simon [2019]. Responsive Tables Demo. 10 Dec 2019. https://elvery.net/demo/responsive-
tables/ (cited on page 18).

Frain, Ben [2017]. Responsive Web Design with HTML5 and CSS3. 2nd Edition. Packt Publishing, 18 Aug
2017. 312 pages. ISBN 1784398934 (cited on page 2).

Frederic [2019]. Fixed header and scrollable body in table in html angular. 10 Dec 2019. https:
//mdbootstrap.com/support/angular/fixed-header-and-scrollable-body-in-table-in-html-angular/

(cited on page 17).

Jo-Geek [2019]. jQuery Plugin For Resizeable Table Columns - ResizeableColumns. 15 Nov 2019. https:
//www.jqueryscript.net/table/jQuery-Plugin-Resizable-Table-Columns.html (cited on page 19).

HTML5 Tutorial [2019]. Basics of Tables. 10 Dec 2019. https://html5-tutorial.net/tables/basics-of-
tables/ (cited on page 3).

ITU [2019]. Individuals using the Internet 2005 to 2019. International Telecommunication Union, 05 Nov
2019. https://itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (cited on page 1).

Mohamed, Abdulrehman, Cheruiyot W.K., and Richard Rimiru [2015]. An Enhanced Approach to Re-
sponsive Web Design in Fluid Grid Concept. International Journal of Scientific&Engineering Research
6.6 (Jun 2015), pages 1214–1224. ISSN 2229-5518. https://www.ijser.org/researchpaper/An-Enhanced-
Approach-to-Responsive-Web-Design-in-Fluid-Grid-Concept.pdf (cited on page 1).

Negi, Himanshu [2018]. Using Media Queries. 02 May 2018. https://medium.com/beginners-guide-to-
mobile-web-development/media-queries-54a1a463356f (cited on page 1).

Sharki, Craig and Andrew Fisher [2013]. Jump Start Responsive Web Design. SitePoint, 14 Apr 2013.
ISBN 0987332163 (cited on page 1).

25

https://www.socialmediatoday.com/news/how-much-data-is-generated-every-minute-infographic-1/525692/
https://www.socialmediatoday.com/news/how-much-data-is-generated-every-minute-infographic-1/525692/
https://alligator.io/css/collapsible/
https://dbushell.com/2016/03/04/css-only-responsive-tables/
https://dbushell.com/2016/03/04/css-only-responsive-tables/
https://css-tricks.com/responsive-data-tables/
https://css-tricks.com/responsive-data-tables/
https://uxdesign.cc/design-better-data-tables-4ecc99d23356
https://uxdesign.cc/design-better-data-tables-4ecc99d23356
https://codepen.io/team/css-tricks/pen/wXgJww
https://codepen.io/team/css-tricks/pen/wXgJww
https://elvery.net/demo/responsive-tables/
https://elvery.net/demo/responsive-tables/
http://amazon.co.uk/dp/1784398934/
https://mdbootstrap.com/support/angular/fixed-header-and-scrollable-body-in-table-in-html-angular/
https://mdbootstrap.com/support/angular/fixed-header-and-scrollable-body-in-table-in-html-angular/
https://www.jqueryscript.net/table/jQuery-Plugin-Resizable-Table-Columns.html
https://www.jqueryscript.net/table/jQuery-Plugin-Resizable-Table-Columns.html
https://html5-tutorial.net/tables/basics-of-tables/
https://html5-tutorial.net/tables/basics-of-tables/
https://itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
http://worldcatlibraries.org/wcpa/issn/2229-5518
https://www.ijser.org/researchpaper/An-Enhanced-Approach-to-Responsive-Web-Design-in-Fluid-Grid-Concept.pdf
https://www.ijser.org/researchpaper/An-Enhanced-Approach-to-Responsive-Web-Design-in-Fluid-Grid-Concept.pdf
https://medium.com/beginners-guide-to-mobile-web-development/media-queries-54a1a463356f
https://medium.com/beginners-guide-to-mobile-web-development/media-queries-54a1a463356f
http://amazon.co.uk/dp/0987332163/

26 Bibliography

SpryMedia [2019]. DataTables. 10 Dec 2019. https://datatables.net/ (cited on page 11).

Tompsett, Brian [2018]. How to use paging in a table in html. 24 Feb 2018. https://stackoverflow.com/
questions/48966595/how-to-use-paging-in-a-table-in-html/48966882 (cited on page 11).

W3Schools [2019a]. CSS calc() Function. 10 Dec 2019. https://w3schools.com/cssref/func_calc.asp
(cited on page 17).

W3Schools [2019b]. CSS resize Property. 10 Dec 2019. https://w3schools.com/cssref/css3_pr_resize.
asp (cited on page 19).

Wood, Adam [2019]. HTML Tags. 10 Dec 2019. https://html.com/tags/ (cited on page 5).

https://datatables.net/
https://stackoverflow.com/questions/48966595/how-to-use-paging-in-a-table-in-html/48966882
https://stackoverflow.com/questions/48966595/how-to-use-paging-in-a-table-in-html/48966882
https://w3schools.com/cssref/func_calc.asp
https://w3schools.com/cssref/css3_pr_resize.asp
https://w3schools.com/cssref/css3_pr_resize.asp
https://html.com/tags/

	Contents
	List of Figures
	List of Listings
	1 Introduction
	1.1 How to achieve Responsive Web Design
	1.2 Media queries
	1.3 Fluid Grid Layouts
	1.4 Flexible images and media
	1.4.1 Relative measurements
	1.4.2 Cropping

	2 HTML Tables
	2.1 Structure of Tables

	3 Good Table Design
	3.1 Alternate row highlighting
	3.2 Current Row Highlighting
	3.3 Expandable Areas
	3.4 Pagination (With Sort and Search)

	4 Responsive Tables
	4.1 Horizontal Scroll
	4.2 Fixed Header
	4.3 Flip Scroll
	4.4 User Resizeable Columns
	4.5 Long Two Column

	5 Recommendation
	5.1 Recommendation

	Bibliography

