
Web UI Animation

Group 5

Rok Kogovšek, Alexei Kruglov, Fernando Pulido Ruiz, and Helmut Zöhrer

706.041 Information Architecture and Web Usability WS 2016
Graz University of Technology

A-8010 Graz, Austria

12 Dec 2016

Abstract

This survey tries to give insights into the uses of web animations and possible ways of creating
them with CSS and JavaScript. Not only, why they should be used on a website, but also when to
use CSS or JavaScript, will be covered. We also explore the enhancement of animation through
SVG. In addition to the theoretical background, numerous practical code examples will be included
and discussed.

© Copyright 2016 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. It uses the LaTex template

from "Writing a Survey Paper" by Keith Andrews, used under CC BY 4.0 / Desaturated from original

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

List of Listings v

1 Introduction 1

2 Animation 3
2.1 Not Just Motion! . 3

2.2 Why Animation in Web UI? . 3

2.3 Aim For Invisible Animation . 4

2.4 Development of Animation . 4

3 Cascading Style Sheets (CSS) 7
3.1 Do Everything You Can With CSS . 7

3.2 CSS Animation Declaration . 8

3.2.1 Animation Property and Keframe Rule . 8

3.2.2 Transition Property and Selector Pattern . 10

3.2.3 Powerful Effect from Single Property . 10

3.3 CSS Examples . 11

3.3.1 Navigation Animation . 11

3.3.2 Loading Animation . 13

3.4 Scalable Vector Graphics (SVG) . 16

3.4.1 Defining Graphical Elementsin SVG . 16

3.4.2 Using SVG in CSS Animation . 17

4 JavaScript (JS) 21
4.1 When to Use JS Instead of CSS . 21

4.2 Examples of Useful Animations with JS . 21

5 Concluding Remarks 25

Bibliography 27

i

ii

List of Figures

2.1 Storyboard Sketching . 5

3.1 Cubic-bezier Function . 9

3.2 Hamburger Examples . 12

3.3 Rotational Loading Animation Examples . 14

3.4 Continues Horizontal Movement Loading Examples . 15

3.5 SVG Basic Graphical Element . 16

3.6 Complex Image with Simple SVG Elements . 17

3.7 SVG Animation Examples . 18

4.1 Hamburger Examples . 23

iii

iv

List of Listings

3.1 Example of Non-motion Animation in CSS . 9
3.2 Example of Non-motion Transition in CSS . 10
3.3 Example of Hamburger Icon in CSS . 11
3.4 Example of Menu Animation in CSS . 12
3.5 Example of Rotating Loading Animation in CSS . 13
3.6 Example of Continues Movement Loading Animation in CSS 14
3.7 Example of SVG Embedded Directyl into HTML . 16
3.8 SVG Declaration Example for Animation . 18
3.9 Create SVG Stucture into HTML . 18
3.10 SVG Animation with CSS Declaration . 19
4.1 Example of Independent Transformations (Rotation, Position) 21
4.2 Example of Making Some Text Performing Turn-around Effect 22

v

vi

Chapter 1

Introduction

Web animations are not only there to look pretty. Animated objects may carry meaning and we will see that
there is much more thinking and planning necessary than expected at first sight.

Knowing this makes it difficult to find the right amount of animation without overdoing it. Some animation
just for the purpose that something happens on the screen will not do any good to the user and might lead to
distraction.

The basic way of implementing animations is with Cascading Style Sheets (CSS). It is widely supported
and offers rather simple but effective ways of transforming objects in a meaningful way. Especially keyframes
and easing effects are widely used for animating objects. The explicit implementation of hamburger menus,
loading icons and navigation bars is described in detail in this survey.

Similar to CSS, SVG animations are possible as well. They have the feature of including basic graphical
elements and have the advantage of being infinitely scalable which might come handy in the online use.

Another way of implementing animations is via JavaScript (JS). It allows more complex creations and
gives the developer much more possibilities and freedom. It requires longer loading times and generally takes
up more memory than pure CSS animations though. A combination of CSS and JS can be useful for a wide
variety of animation effects. Especially the possibilities of animating text with JS and CSS are underlined in
this survey.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Animation

"Animation is defined as changing some property over time. On the other hand, motion is the act of moving
or the process of being moved. . . . To put it more simply, all motion is animation, but not all animation is
motion."[Head, 2016]

2.1 Not Just Motion!

In animation we change an object’s attribute(s) over time to achieve an objective. As stated by Head [2016],
animation is much more than adding movement to an object. Movement of an object can be described by a
change of its 6 degrees of freedom, them being the coordinates in 3D space and the rotation around the 3D space
axises. However an object has usually many more changeable attributes or properties. One could animate color
changing and fading, invisibility through transparency, growth with scaling, focus with blurring, etc.

2.2 Why Animation in Web UI?

While writing this survey, with so much animation theory, a hilarious idea was just coming up to mind. Have
you ever stopped to think about why some people just seem to be more funny than others? And of course, this
happens everyday. Just think about a good joke told by someone with no real humour. It is meaningless. Now,
think about the same joke being told by a profesional comedian on TV telling jokes over the weekend. Way
more funny, is it not? But the point is, why and how is this be possible? It has lots to do with how they speak
and how they move! As well of other minor factors. That, I am afraid, is the same as with animation. To have
a better understanding of what factors are involved and how they can improve the user experience in UIs, we
look deeper into it in this section with Head [2016] as the reference point.

Animation, be it in a cartoon, webpage, app or anywhere else, adds a new level of communication which
can be hard to explain , but easy to feel. It creates a special connection between what the message is intended
to be, and the receiver. It allows an additional cannel of invisible information to exist, and makes the viewer
feel part of the process, and gets his attention grabbed in a practical way.

We always need to understand, where we are and where are we going to. Animation can helps us with this
and even can improve the use of resources. Just think about when trying to navigate through a small screen.
Having some animated window coming out when you put your mouse on, does not only save space (which is
already a good enough reason to implement it), but makes the entire process of navigating easier and simpler.
A user does not really want to think while navigating, and this can be fulfilled with animation. They can be
guided, orientated or helped in going through a process just with animation, which will of course improve their
user experience and make them feel more sure and comfortable about what they are doing, without thinking
they are in a real puzzle and need to make big use of their brains.

Putting it all together, we can effectively ensure that a well planned animation will improve decision making,
as it will guide the user through the entire process, allowing him to be more aware about the real process or

3

4 CHAPTER 2. ANIMATION

task he or she is willing to achieve, and not about the real animation. Of course, this can be enforced by the fact
that the user will feel listened and will probably trust more the site because of the animation being interactive,
giving in some way feedback, making the user feel comfortable when its input is being taken into consideration.

Nowadays, it´s very common to access many sites through different devices. Just think about when trying
to know any train timetable. You probably have the app in your Smartphone, but depending on where are you
at the moment, you might just google it up and search it through their webpage. Having animation allows sites
to connect context and media. A user will just find himself guided throught the process no matter where he is
or what device is he using, because of being under some potential animation process.

But, how do these animations grab people´s atention? There are over twelve basic principles, written by
Disney, but two of them are like the foundation of animation, and the rest basically build up from them. Timing
and spacing. Timing can be understood as the time length of an action to happen, let’s say the duration of
it, while spacing could be explained as the speed changes during one of these actions in an animation. Head
[2016] (Chapter 2, page 18) describes their impact with: “Timing and spacing convey the mood, emotion, and
reaction of an object.”

2.3 Aim For Invisible Animation

In animation, it is very common during the designing process to end up messing things up. As a general
rule, as a designer, your one good way to show love to the user is actually not making his or her life harder
accomplishing the task at hand. Certainly designers do not hold such ill intentions, but as said before, it is
quite easy and happens very often just to have users unnecesarily waiting for an animation to finish or having a
hard time finishing a task due to animation. It could be said that the perfect animation is the one which is not
noticed. That´s not 100% accurate, but a good idea in general.

“Good interface animations need to be flexible and always feel responsive to a user’s input even if the
animation is currently animating.”Head [2016] (Chapter 3, page 48)

Users need feedback to feel themselves listened and understood. Animation can be understood as a bridge
which takes the user to a higher quality experience. If an animation doesn’t respect having the user happily
informed with feedback, its experience quality will of course drop and so will the trust towards the UI. A user
will never feel comfortable in a system which does not take into consideration its input.

It is also important, that an animation should never be a show-off work. It should be always remembered,
that in general, the user interacting with an animation, is probably willing to do or finish something. A UI user
is not just laying there waiting for an animation to happen and look at it itself and enjoy it. That could be the
aim of animators years ago where they were really telling stories and people were fascinted about it. But times
changed, and now the timing requirements are no longer the same as in those days. Study and carefully think
about the suitable timing for each animation, because a short amount of milliseconds can be the limit between
failing or succeeding. Good timing is more an art than a science [Head, 2016].

2.4 Development of Animation

There are lots of guidelines to help developers through the development of an animation, but what about some
guidelines for the actual development itself? When coming up to a project, the animation issues are often
discussed at the end of it. It is quite normal to just understand animation in a project as extra decoration, as
something which is not mandatory, which will just make the whole running project look a little nicer. This
should not be the way of proceeding, but it is the reality of many projects. Animation should be part of the
design, due to the potential for a better user experience, like described in section 2.2. Just bare in mind that
when the project is finished, it is usually too late to replan the design involving animation at its full potential,
and this leads to many projects to just leave beside some good animation ideas. Trying to makes things easier
for the user (that is what animation is all about) at the end of a project, when everything is quited fixed, doesn´t

2.4. DEVELOPMENT OF ANIMATION 5

Figure 2.1: Example of storyboard sketching for drag and drop animation [Windows Dev Center, 2016].
[Used with permission from Microsoft - Microsoft Copyrighted Content Guidelines]

sound like a good plan. Always start planning animation schemes in early stages! It is always better to have
a pause after each step of the project design to talk about animation, than to rather avoid it at all because its
already too late! Remember that animation can replace a fixed design element which might make the user have
a bigger quality of the experience, or less brain demanding. And of course, as taken as a part of the project
design, style guides and documentation about the used animation should be reported. And no need to say,
understanding the basics of animation principles, and how they can influence the user, and bearing in mind
the accessibility issue . . . as a conclusion, just make sure you don´t forget any of the points mentioned in the
earlier sections of this survey. When coming up to the how to plan it, probably the best way in early stages is
storyboard sketching. This is a great, simple and quick way of more or less understanding what we are doing (or
planning to do). When moving further, however, building an animation prototype inside the design prototype
can be very suitable before moving on to the next stage, as it can allow designers to really test and see if what
they´re doing its actually as good and helpful as they think.

6 CHAPTER 2. ANIMATION

Chapter 3

Cascading Style Sheets (CSS)

Knowing the usefulness of animation in web UI and the correct way of animation planing are just the fun-
demantals for our conceptual plans. Those still need to be implemented to get the end product and here we
usually hit a wall build from the various tools, that say they can all solve our problems. Even well established
people in the field have stories as such to tell. Val Head actually started with animation due to an interesting
Flash workshop. Flash was at that time the de facto king in its era, however as we know, that era is already
dead. Nowdays we can acomplish all we could with Flash and more with just the core parts of the web, namely
HTML, CSS and JS [Head, 2016].

3.1 Do Everything You Can With CSS

With Responsive web design (RWD) in our websites and animation being part of the design, see section 2.4,
it should be natural to use the guidelines of RWD also in animation planning. Andrews [2016] teaches us
that one of the RWD guidelines is also Progressive enhancement, which is best described with words of the
conceptual authors Champeon and Finck [2003]: "Leave no one behind. . . . accessibility is for everyone, not
just the disabled". With CSS nowdays being a core part of the web and at the same time being the lowest web
component that enables animation with RWD guidelines1, one should always implement with CSS and HTML
alone as much of the desired animation as possible. One has only to make sure the browser support for the
animated attribute.

Other supporting arguments for use of CSS as the starting point for web UI animation beside responsiveness
can be summarized with the the so called "Simple CSS Truths", a list of truths by Palermo IV [2015] enhanced
with the teachings of Andrews [2016]:

CSS allows for separation of concerns - With CSS the form is separated from the page’s HTML structure
and content. Makes it easier to read, maintain and crawl the code.

CSS has a captive audience - Support for CSS development is huge. At the same time more and more librar-
ies, tools and frameworks focus on improving and simplifing CSS development.

CSS is fast - External CSS speeds up HTML downlaod and loading compared to HTMLs with duplicated
inline styles. Compared to JavaScript it also processes transitions and animations faster.

CSS is fault-tolarent - Browser-unknown enhancements are simply ignored by the browser, while the re-
mainder is still used and displayed.

CSS is everywhere - Modern browsers embrace CSS and feature support by each can be easily found online.

1Of course one can just use an animated image, e.q. a GIF with an image sequence, and just append it with HTML into the design.
However, this image will become a static component of the design and will not follow RWD guidelines.

7

8 CHAPTER 3. CASCADING STYLE SHEETS (CSS)

3.2 CSS Animation Declaration

As stated in section 2.1, animation is about changing an element’s attribute(s) over time. In CSS we can redefine
it as a switch between CSS styles for a HTML element that happens gradually over time. It is stated that CSS
animation should be done with Animation property(ies) and Keyframe rule(s). This may be the most efficient
CSS way to accomplish animation, but CSS animation can also be achieved with Transition property(ies) and
selector pattern(s)[W3Schools, 2016a; W3Schools, 2016b].

3.2.1 Animation Property and Keframe Rule

The prefered declaration for animation in CSS is done by setting animation properties to the element, that will
change through time. This properties just define to which animation steps or keyframes the element is linked
to and how the in-between-keyframe states are interpolated through time. W3Schools [2016a] explains the
different properties as follows:

animation-name: Here the @keyframe rule name is used to link the rule to the element. Since CSS animation
is a set of animation properties and keyframe rules, it is a neccasery property.

animation-duration: Like-wise to the name, duration of the animation is also a neccasery property, since it
defaults to 0. Animation is defined as a change over a time, so with the time duration being zero, of
course there is no animation. Actual working values can be either seconds (#s) or miliseconds (#ms),
that define one cycle of the animation.

animation-timing-function: Defines the progression curve over time, that defines how the animation is inter-
polated. The valid values are linear, ease, ease-in, ease-out, ease-in-out, cubic-bezier(x1,y1,x2,y1) and
steps(stepSize, start, end). Acording to Head [2016], most animators have a hard time imagining the
effect of functions that start with ease*. While linear and steps are simple to understand and enough for
simple animations, the cubic-bezier function should be used, since it can define any desirable curve. The
way the cubic-bezier function works, can be observed in figure 3.1.

animation-delay: Defines how many seconds or miliseconds should the animation start be delayed. The de-
fault value is 0. It is useful, when we want multiple elements be animated one after another.

animation-iteration-count: We can define with a number, how many loops of the cycle should be done or set
it to infinite cycles for a non-stop replay. The default value is 1.

animation-direction: With this property we describe in which way the animation is interpolated and what
happens after the 1st cycle of animation. By setting it to the default normal, set it to reset the element
into the state before animation and start it again. Reverse always starts from the end keyframe and goes
towaqrds the starting keyframe, while alternate will alternate between normal and reverse by the oddness
of the cycle number. Another option is the self-explanatory alternate-reverse.

animation-fill-mode: Defines what happens to an unplayed element, be it after finishing the animation or
during a delay wait. By the default none the element has the CSS style outside the keyframe rules.
Forwards will use the style of the last keyframe, while backwards will use the style of the first keyframe.
A special option is both, that uses the styles of both the start and end keyframe.

animation-play-state: It is mostly a property used for testing and with control triggers. As the property name
states it is either paused or running.

Same as with other CSS properties animation properties can be combined into a single property, simply
called animation and where the property values follow as stated:

animation: name duration timing-function delay iteration-count direction fill-mode play-state;

3.2. CSS ANIMATION DECLARATION 9

Figure 3.1: With coordinates for the location of the start and end weight we can define the de-
sired function curve for progression through time by how much each half of the func-
tion should be deformed away from a linear function [Head, 2016]. [The image is from
the book "Designing interface animation" by Head [2016], used under CC BY 2.0 / It is accessible at ht-
tps://www.flickr.com/photos/rosenfeldmedia/albums/72157671107313626.]

While the animation properties just link the element to the desired changes, the actual CSS changes are
defined in the @keyframes rule. In the rule we can set the keyframes, that are the finishing times, when a
change should end. The keyframe times are simply described with percantage from 0% as the start keframe
and 100% as the end keyframe. To this times we simply set, which styles should be used at the appointed time.
The interpolation function set in with animation property will during proccessing interpolate the undefined
percantages. For a better understanding see listing 3.2.1.

1 div{
2 animation: desiredName 4s linear 0s infinite alternate;
3 }
4
5 @keyframes desiredName {
6 0% {background -color:red;opacity: 1;transform: scale(1);}
7 25% {background -color:yellow;transform: scale(0.8);}
8 50% {background -color:blue;transform: scale(1);}
9 75% {background -color:green;transform: scale(1.5);}

10 100% {background -color:red;opacity: 0.2;transform: scale(2);}
11 }

Listing 3.1: Simple example of non-motion animation with animation property and
keyframes rule. A working example can be found between the attached code
examples under nonmotionAnimationCSS.html.

10 CHAPTER 3. CASCADING STYLE SHEETS (CSS)

3.2.2 Transition Property and Selector Pattern

The transition property can be used the same way as th animation property for defining the linking and inter-
polation details. There are even similarities int hte properties:

transition-property: With this property we can link the the transition to a change in CSS, similar as with
animation-name. However here we specify which of the CSS properties of the element should be inter-
polated during the change. It can be one or more properties seperated with a comma. We also have the
default option none and convenient all, that sets all propertis to interpolate.

transition-duration: Same as animation-duration property.

transition-timing-function: Same as animation-timinig-function property.

transition-delay: Same as animation-delay property.

The unified property is also defined by the same order, with just less options:

transition: property duration timing-function delay;

One can imagine the transition being a simplified version of the animation property, that can only have two
keyframe, namely the start and end of the aniamtion or transtion. The start keyframe style is defined in the CSS
style of the unchanged element, while the end frame is defined in a declaration where the specified transition
property is changed. The easiest way to control such animations is with event seperators, such as :hover. This
way we can define an animation to happen after hovering over the element. Since we can define just two
keyframes and there ano repetitions, we are quite limited with the possible animations, which is also the reason
for the animation property and keyframes rule to be used most of the time for animations. The limitations can
be easily observed, when comparing the codes and results for 3.2.1 and 3.2.2.

1 div{
2 background -color: red;
3 opacity: 1;
4 transition: all 4s;
5 }
6 div:hover{
7 background -color:green;
8 opacity: 0.2;
9 transform: scale(2);

10 }

Listing 3.2: Simple example of non-motion animation with transition property and hover
selector. A working example can be found between the attached code examples
under nonmotionTransitionCSS.html.

3.2.3 Powerful Effect from Single Property

While any CSS property can be defined for the animated change, there are some that can bring much more
effect than others. Such would be the transform property, that can define translation, trotation and scalation in
2D and 3D space, plus also having options for skewing and puting into perspective the element. What is even
more, is that all can be achieved at the same time. Just with combining it with the transform-origin property
any kind of motion animation can be achieved.

3.3. CSS EXAMPLES 11

3.3 CSS Examples

While the previous sections tell us why animation can be useful, why CSS should be used and how to declare
animation in CSS, we have yet to see CSS examples that show the difficulty to implement animation that brings
benifits to the UI.

3.3.1 Navigation Animation

As stated in section 2.2, animation can help with navigation through the page. In the code examples we show
two typical cases of such usage, namely the famous hamburger icon and menu position animation.

Hamburger Icon

The name comes from the icon being a set of three horizontal parallel lines sticking close together, the same
way as the hamburger patty and meet sticks together. The icon is a metaphor for the menu to be tightly packed
together, when we hide it "within" the icon. From the metaphor we also see the usefulness of such a concept,
being the saving of space with hiding the menu and by showing the menu showing also the navigation path we
are taking.

Implementations use various kinds of animations to make the use of the icon subtile and easy to use. Usu-
ally it is doen by rotating the lines in the icon into an X for showing the way of hiding or closing the menu
and a sliding animation of the menu apearring from the border to show the navigation flow. An example of
implementaations can be also observed in the code examples hamburgerVariationCSS.html and hamburgerMe-
nuCSS.html, which are based on the code snippets provided by Boyce [2014] and Couch [2014].

By the information provided by Rand [2015], it is believed that the origins of the concept go back to 1981
and the famous company Xerox. However the explosion of usage came into being in the last decade, when
designers were face with the problem of small screens on mobile devices.

1 HTML structure:
2 <!-- ICON -->
3 <div id="menu-button" role="button">
4 <div class="hamburger"><div class="inner"></div></div>
5 </div>
6 <!-- HIDDEN MENU -->
7 <nav>
8 Home Page
9 Other stuff

10 </nav>
11 Key CSS:
12 /*Creates the hamburger lines*/
13 .hamburger::before, .hamburger::after, .hamburger .inner {
14 transition: all 750ms ease-in-out; ...
15 }
16 /*Upper and bottom lines rotate into an X*/
17 .paperNav -container:hover .hamburger::before {
18 transform: translate3d(-4px, 1px, 0) rotateZ(-45deg);
19 }
20 .paperNav -container:hover .hamburger::after {
21 transform: translate3d(-4px, -1px, 0) rotateZ(45deg);
22 }
23 /*Middle line rotates into a point*/
24 .paperNav -container:hover .hamburger .inner {
25 transform: rotateY(-90deg);
26 }

Listing 3.3: Extracted key HTML structure and CSS code for rotating the icon into an X.
For details check code example hamburgerMenuCSS.html.

12 CHAPTER 3. CASCADING STYLE SHEETS (CSS)

Figure 3.2: One the left we have a screenshot of code example hamburgerVariationCSS.html, which shows
some of the different ways how hamburger icons are animated. On the right side we have
hamburgerMenuCSS.html, that demonstrates the showing and hiding of the menu by hovering
over the hamburger icon. [Screenshot taken by the authors of this survey. The code behind the pages is by using
the Boyce [2014] and Couch [2014] online snippets as a base.]

Current menu position indicator

A common problem with big menus is to keep track, where we currently are. The usual solutions are making
a CSS change on the currently hovered or selected element. This can barely be said to be an animation, since
the transition is instant. But such solutions can be even further improved with small animations, that are just
extended previous solutions with the transiton having a duration. With adding duration to the animation, the user
does not need to find where the change happened but just by observing it becomes a natural knowledge to the
user, which also reduces the memory load and adds continuity to the navigation process. Typical solutions are
combinations of opacity changes and translations of lines or even the menu words themselves. Such solutions
can be observed in the code example in navigation.html, which is based on the code snippets by EvyatarDa
[2015].

1 HTML structure:
2 <div class="container [color] [effectClass]">
3 HOME
4 ABOUT
5 CONTACT
6 </div>
7 Key CSS:
8 /* Line that transits slowly under the text*/
9 div.[class] a:before, div.borderYtoX a:after

10 {
11 height: 100%; /*vertical*/
12 width: 2px; /* line */
13 transition: all 0.3s; ...
14 }
15 div.topBotomBordersOut a:after
16 {
17 bottom: 0px;
18 transform: translateY(-10px);
19 }
20
21 /*Text jumps out*/
22 div.highlightTextOut a:before,
23 div.highlightTextIn a:before
24 {
25 content: attr(alt);
26 transition: all 0.3s;
27 transform: scale(0.8);
28 opacity: 0; ...
29 }

3.3. CSS EXAMPLES 13

30 div.highlightTextOut a:hover:before,
31 div.highlightTextIn a:hover:before
32 {
33 transform: scale(1);
34 opacity: 1;
35 }

Listing 3.4: Extracted key HTML structure and CSS code for presenting a few animations
for menu position. For details check code example navigation.html.

3.3.2 Loading Animation

Another important use of animation is user feedback, see 2.2. The most common case being loading animations,
that give the user a confirmation that the process is running, to not worry him of possible invisible crashes. The
variety of animations is big but most could be specified as a continues rotation or a continues movement, usually
in the horizontal direction. It is important to note, that all provided examples are pure HTML and CSS, without
any JavaScript or SVGs. This also shows how powerful CSS can be.

Rotating Icon

A quick look at listing 3.3.2 shows that the needed structure is just a div that has either a curve border created
or it has a background color added. The circle animation is done with rotation in 2D space, while the square an-
imation is done with rotation in 3D space. Working code examples are present in circleRotate2DCSS.html and
squareRotated3DCSS.html, which are built from snippets done by W3Schools [2016d] and PEXELS [2014].

1 HTML structure:
2 <div class="loaderClass"></div>
3 Key CSS:
4 .circleLoader {
5 border: 16px solid #f3f3f3; /* Light grey */
6 border-top: 16px solid #3498db; /* Blue */
7 border-radius: 50%; /*the border is turned into the circle*/
8 width: 120px;
9 height: 120px;

10 animation: spin 2s linear infinite;
11 }
12 @keyframes spin {
13 0% { transform: rotate(0deg); }
14 100% { transform: rotate(360deg); }
15 }
16
17 .squareloader {
18 width: 60px;
19 height: 60px;
20 margin: 60px;
21 animation: rotate 1.4s infinite ease-in-out;
22 }
23 @keyframes rotate {
24 0% { transform: perspective(120px) rotateX(0deg) rotateY(0deg);}
25 50% { transform: perspective(120px) rotateX(-180deg) rotateY(0deg);
26 }
27 100% { transform: perspective(120px) rotateX(-180deg) rotateY(-180deg);}
28 }

Listing 3.5: The actual needed code for both rotation loading animations. Working examples
can be seen in circleRotate2DCSS.html and squareRotated3DCSS.html.

14 CHAPTER 3. CASCADING STYLE SHEETS (CSS)

Figure 3.3: A screenshot of rotating loaders, with the left one being a circle rotated in 2D and the right one
a square rotated in 3D. The example code is located in circleRotate2DCSS.html and squareRo-
tated3DCSS.html. [Screenshot taken by the authors of this survey. The code behind the pages is by using the
W3Schools [2016d] and PEXELS [2014] online snippets as a base.]

Horizontal movement

The most common continues movement loader are horizontal. Therefore we provided 3 different types of
movement in horizontal direction, namely moving dots, a progressbar and pulz-like wave motion. The working
examples can be found in movingDotsCSS.html, progressbarCSS.html and pulzLoadCSS.html, which we built
using the PEXELS [2014] online snippets as a base.

1 HTML structure:
2 <div class="loaderClass"><div></div><div></div><div></div><div></div></div>
3 Key CSS:
4 .dotsLoader div {
5 background -color: black;
6 border-radius: 50%;
7 animation: dots-move 4s infinite cubic-bezier(.2,.64,.81,.23); ...
8 }
9 .dotsLoader div:nth-child(2) {

10 animation -delay: 150ms; /*Change delay per child*/
11 }
12 @keyframes dots-move {
13 0% {left: 0%;}
14 75% {left:100%;}
15 100% {left:100%;}
16 }
17
18 .progressbarloader:before{
19 display: block;
20 position: absolute;
21 left: -200px;
22 width: 200px;
23 height: 4px;
24 background -color: #2980b9;
25 animation: bar-loading 2s linear infinite;

3.3. CSS EXAMPLES 15

26 }
27 @keyframes bar-loading {
28 from {left: -200px; width: 30%;}
29 50% {width: 30%;}
30 80% { left: 50%;}
31 95% {left: 120%;}
32 to {left: 100%;}
33 }
34
35 .pulzLoader div {
36 animation: pulz-loading 1s ease-in-out infinite; ...
37 }
38 .pulzLoader div:nth-child(1) {
39 background -color: #3498db; /*Change color per child*/
40 animation -delay: 0; /*Change delay per child*/
41 }
42 @keyframes pulz-loading {
43 0% { transform: scale(1);}
44 20% { transform: scale(1, 2.2);}
45 40% { transform: scale(1);}
46 }

Listing 3.6: Extracted key HTML structure and CSS code for dots, progressbar and
pulz loader. For details check code example movingDotsCSS.html,
progressbarCSS.html and pulzLoaderCSS.html.

Figure 3.4: A screenshot of continues movement loaders in horizontal direction. On top we have animated
dots that slow down in the middle of the animation. Second loader is the common progres-
bar, that is done by changing the left and width property. At the bottom we have an example
of a pulz loader, that moves in wave form horizontaly and scales the bar when the "wave"
comes. The example code is located in movingDotsCSS.html, progressbarCSS.html and pulz-
LoadCSS.html. [Screenshot taken by the authors of this survey. The code behind the pages is by using the
PEXELS [2014] online snippets as a base.]

16 CHAPTER 3. CASCADING STYLE SHEETS (CSS)

3.4 Scalable Vector Graphics (SVG)

SVG (Scalable Vector Graphics) is an XML (Extensible Markup Language) based specification for describing
two-dimensional graphics in a vector form. It is specified by W3C (World Wide Web Consortium). Initial
release was made in 2001, and the latest release (1.1) was in 2011. Currently it is used in all latest major
web browsers, such as Google Chrome, Mozilla Firefox and Internet Explorer, and in some vector graphics
software editors, as Inkscape and Adobe Illustrator. In contrast to raster images, vector images are resolution
independent, as the format itself is lossless. As mentioned before, the graphic is described in an XML textual
file, which can be compressed with gzip. As a result of compression, web pages, where SVG is used load faster
than those which use standard JPEG or PNG graphics solutions. Because graphics can be directly embedded
into HTML, no extra HTTP requests are necessary. Above approaches lead to saving of the bandwidth, which
is extremely important on the pages with higher loads. SVG has a support for different graphics effects and
animations, which can be further enhanced with CSS and JavaScript. In case SVG graphic is made in a very
complex node structure, browser can have problems rendering the image. In this case other technologies can be
used. SVG integrates with other W3C standards such as the DOM and XSL. Since the graphics are described
in vectors, we can change the properties of those through time to achieve much more complex animation than
with just HTML elements [W3Schools, 2016e].

3.4.1 Defining Graphical Elementsin SVG

As mentioned before SVG graphics can be embedded directly into HTML pages as an HTML element:

1 <html>
2 <body>
3 <svg width="100" height="100">
4 <circle cx="50" cy="50" r="40" stroke="green" stroke-width="4" fill="

yellow" />
5 </svg>
6 </body>
7 </html>

Listing 3.7: Simple example code one circle embedded directyl into HTML.

Figure 3.5: This example shows how simple to add one element (circle) embedded directyl into HTML.
[Screenshot taken by the authors of this survey. The code behind the pages is by using the W3Schools [2016c] online
snippets as a base.]

SVG consists of different basic graphical elements, from which more complex elements can be derived. Basic
elements included in SVG are:

<rect> is used to draw a rectangle and variations of the shape of a rectangle.

<circle> creates a simple circle with color options.

<line> draws a line.

3.4. SCALABLE VECTOR GRAPHICS (SVG) 17

<polygon> is used to create a graphic that contains at least three sides.

<polyline> provides any shape consisting of straight lines.

<path> defines a path. Use of a SVG editor is strongly encourage for path drawing to create complex graphics.

With these simple basic elements, one can build very complex shapes. With heli one has also additional
graphics functions, where creation of a moving figure is also included. However, if these figures are created
just by using SVG, the program code will be very large and difficult to read.

Figure 3.6: Example to create one complex picture with simple SVG elements, with help geomety and
color options. [Screenshot taken by the authors of this survey. The code behind the pages is by using the Bloq
[2015] online snippets as a base.]

3.4.2 Using SVG in CSS Animation

SVG element is a specific DOM element, which includes himself syntax standard HTML-element. SVG ele-
ments have unique tags, attributes and behaviors that enable them to determine any form that offer the opportun-
ity to essentially produce directly to the DOM, images, and thereby benefit from the JavaScript and CSS-based
manipulation. There are three main advantages to create graphics in SVG comaped to statc images:

1. SVG can be compressed incredibly well. Certain images as SVGs are smaller than their PNG / JPEG
equivalents.

2. SVG graphics can be scaled without any loss of clarity to any resolution. Therefore they look sharp on
all desktop and mobile screens.

3. One can animate the individual components of the SVG graphic’s performance with CSS or/and JavaS-
cript. Keep in mind that SVG elements take some of the standard CSS properties, but not all.

In addition, SVG takes a certain set of "presentation" attributes, such as fill, x and y, which also serve to
determine how the SVG is visually observed. There is no functional difference between the SVG specification
of style using CSS, or as an SVG attribute [W3Schools, 2016e]. In short, to animate and SVG, one has to:

1. Define the imeage as vectors in SVG.

2. Tranform the vectors with SVG, CSS or JavaScript.

18 CHAPTER 3. CASCADING STYLE SHEETS (CSS)

1 <animateTransform attributeName="transform"
2 attributeType="XML"
3 type="translate"
4 values="0 50;0 -50;"
5 dur="2s"
6 repeatCount="indefinite"/>

Listing 3.8: SVG declaration example for animation.

Figure 3.7: Left example SVG is created by the authors to achieve a a trash bin animation with CSS. While
the right example is a pure SVG beer animation. [Screenshots taken by the authors of this survey. The
animation code behind the trash bin is done by the authors, while the SVG objects are provided by Free Goodies
for Designers [2016].The beer code is based on the Ali [2015] online snippets as a base.]

1 <svg class="svg-icon" viewBox="0 0 20 20">
2 <path id="svg-doc" d="M15.475,6.692l-4.084-4.083C11.32,
3 2.538,11.223,2.5,11.125,2.5h-6c-0.413,0-0.75,0.337-0.75,
4 0.75v13.5c0,0.412,0.337,0.75,0.75,0.75h9.75c0.412,
5 0,0.75-0.338,0.75-0.75V6.94C15.609,6.839,15.554,6.771,
6 15.475,6.692 M11.5,3.779l2.843,2.846H11.5V3.779z
7 M14.875,16.75h-9.75V3.25h5.625V7c0 ,0.206,0.168,0.375,
8 0.375,0.375h3.75V16.75z"
9 transform="scale(0.25) translate(27.5)"></path>

10
11 <path id="svg-bottom" fill="none" d="M16.471,
12 5.962c-0.365-0.066-0.709,0.176-0.774,0.538l-1.843,
13 10.217H6.096L4.255,6.5c-0.066-0.362-0.42-0.603-0.775-0.538
14 C3.117,6.027,2.876,6.375,2.942,6.737l1.94,10.765c0.058,
15 0.318,0.334,0.549,0.657,0.549h8.872c0.323,0,0.6-0.23,
16 0.656-0.549l1.941-10.765C17.074,6.375,16.833,6.027,16.471,
17 5.962z"
18 transform="scale(0.75) translate(4,20)"></path>
19
20 <path id="svg-deck" fill="none" d="M16.594,3.804H3.406
21 c-0.369,0-0.667,0.298-0.667,0.667s0.299,0.667,0.667,
22 0.667h13.188c0.369,0,0.667-0.298,0.667-0.667S16.963,
23 3.804,16.594,3.804zM9.25,3.284h1.501c0.368,0,0.667-0.298,
24 0.667-0.667c0-0.369-0.299-0.667-0.667-0.667H9.25c-0.369,
25 0-0.667,0.298-0.667,0.667C8.583,2.985,8.882,3.284,9.25,3.284z"
26 transform="scale(0.75) translate(4,20)"></path>
27 </svg>

Listing 3.9: The definition of the trash bin vectors, in figure 3.7, with the path element,
proveded by Free Goodies for Designers [2016].

3.4. SCALABLE VECTOR GRAPHICS (SVG) 19

1 #svg-doc{
2 fill:red;
3 animation: doc-delete 4s linear infinite;
4 }
5
6 #svg-deck{
7 transform -origin: 100% 50%;
8 animation: deck-rot 4s linear infinite;
9 }

10
11 @keyframes doc-delete {
12 0% { transform: translate(75%) scale(0.25); }
13 15% { transform: translate(75%) scale(0.25); }
14 65% { transform: translate(85%,150%) scale(0.1) rotate(-180deg);}
15 100% { transform: translate(85%,150%) scale(0.1); opacity: 0;}
16 }
17
18 @keyframes deck-rot {
19 0% { transform: translate(-9%, 440%) rotate(0deg) scale(0.75); }
20 25% { transform: translate(-9%, 440%) rotate(90deg) scale(0.75);}
21 40% { transform: translate(-9%, 440%) rotate(90deg) scale(0.75);}
22 65% { transform: translate(-9%, 440%) rotate(0deg) scale(0.75);}
23 100% { transform: translate(-9%, 440%) rotate(0deg) scale(0.75);}

Listing 3.10: The animation of the trash bin vectors, in figure 3.7, with the path element,
proveded by Free Goodies for Designers [2016]. The animation wokrs
together with the vectors in the previous listing.

20 CHAPTER 3. CASCADING STYLE SHEETS (CSS)

Chapter 4

JavaScript (JS)

As an addition to plain CSS, animations can also be brought to life via JavaScript (JS) or a combination of CSS
and JS. When to use which kind of implementation method is dependent on the possibilities in terms of control
and effect one wants to achieve.

4.1 When to Use JS Instead of CSS

As a rule of thumb, JS should not be used if the same effect could be achieved with plain CSS. This is due to
performance and resource management reasons. Just when CSS is stretched to its limits, JS should be used.
There is a rough distinction whether to use CSS or JS for particular kinds of tasks:

• Use CSS animations for simple transitions, like changing the state of a UI element.

• Use JS animations to get advanced effects like bouncing, stop, pause, rewind, or slow down (there is
more control over animations).

• When choosing to animate with JS, considering using the Web Animations API or a modern framework
(comfortable to work with) may be desirable.

Apart from this clear distinction, using both CSS and JS works also well. One could perform animations with
CSS and control states with JS. [Lewis and Thorogood, 2016]

4.2 Examples of Useful Animations with JS

The following example taken from GreenSock [2014b] is capable of breaking the CSS-habit of isolating trans-
formations such as scaling, rotations and transposing. To be more precise, this example allows independent
animations at a time with the help of partially overlapping start and ending times as well as different easing
effects. This example would not be implementable with pure CSS.

1 //pulsate the box using scaleX and scaleY
2 TweenMax.to($box, 1.2, {scaleX:0.8, scaleY:0.8, force3D:true, yoyo:true, repeat

:-1, ease:Power1.easeInOut});
3
4 $("#rotation").click(function() {
5 rotation += 360;
6 TweenLite.to($box, 2, {rotation:rotation, ease:Elastic.easeOut});
7 });
8
9 $("#rotationX").click(function() {

10 rotationX += 360;

21

22 CHAPTER 4. JAVASCRIPT (JS)

11 TweenLite.to($box, 2, {rotationX:rotationX , ease:Power2.easeOut});
12 });
13
14 $("#rotationY").click(function() {
15 rotationY += 360;
16 TweenLite.to($box, 2, {rotationY:rotationY , ease:Power1.easeInOut});
17 });
18
19 $("#move").click(function() {
20 if (wanderTween) {
21 wanderTween.kill();
22 wanderTween = null;
23 TweenLite.to($box, 0.5, {x:0, y:0});
24 } else {
25 wander();
26 }
27 });
28
29 //randomly choose a place on the screen and animate there, then do it again,

and again.
30 function wander() {
31 var x = (($field.width() - $box.width()) / 2) * (Math.random() * 1.8 - 0.9),
32 y = (($field.height() - $box.height()) / 2) * (Math.random() * 1.4 - 0.7);
33 wanderTween = TweenLite.to($box, 2.5, {x:x, y:y, ease:Power1.easeInOut ,

onComplete:wander});
34 }

Listing 4.1: This example shows independent transformations, such as scaling, rotating and
changing the position of some text.

Another example (GreenSock [2014a]) which uses the combined power of CSS and JS is the following.
Some random text is animated with a lively turn-around effect. It is based on the ability to split up stings into
separate characters via JS.

1 tl = new TimelineLite({onUpdate:updateSlider , onComplete:onComplete ,
onReverseComplete:onComplete , paused:true});

2
3 //do a simple split of the text so we can animate each character (doesn’t

require the advanced features of SplitText , so we just use split() and join
())

4 $text.html("" + $text.html().split("").join("").split(" ").join(" ") + "");

5
6 //set a perspective on the container
7 TweenLite.set($text, {perspective:500});
8
9 //all of the animation is created in this one line:

10 tl.staggerTo($("#text span"), 4, {transformOrigin:"50% 50% -30px", rotationY
:-360, rotationX:360, rotation:360, ease:Elastic.easeInOut}, 0.02);

11 }

Listing 4.2: This example implements a turn-around effect of text with the help of splitting
up strings into single characters and animating them individually.

4.2. EXAMPLES OF USEFUL ANIMATIONS WITH JS 23

Figure 4.1: We provide also great animation examples of combining CSS and JS in code folders solar and
rocketmanSVG, to show the potential we can achieve. While the solar system at the top is
purely CSS and JS, the bottom rocketman uses SVG with CSS and JS to draw more complex
objects. This are not so much animations directed at UI development as simulations, however
they greatly show the possibilities of CSS and JS for animation. [Screenshot taken by the authors of
this survey. The code behind the pages is by using the Garnier [2015] and Gannon [2015] online snippets.]

24 CHAPTER 4. JAVASCRIPT (JS)

Chapter 5

Concluding Remarks

Through the course of further investigating web animations, we realized that animations are not merely there
to make a website appear more beautiful, but to carry meaning as well. So, if a user sees a hamburger icon,
they should, and nowadays probably they do, know what this icon stands for. We showed many other useful
applications for animation in web UI design, how we can achieve them with CSS, SVG and JS. Numerous
examples of code show, how powerful CSS by istelf can be and how each addition on top of it enhances it,
which makes it great for RWD development

25

26 CHAPTER 5. CONCLUDING REMARKS

Bibliography

Ali [2015]. Animated svg - Pintsize logo. English. CodePen. 2015. http://codepen.io/alistairtweedie/pen/
GgPBqP (cited on page 18).

Andrews, Keith [2016]. Information Architecture and Web Usability. 2016 (cited on page 7).

Bloq, Creative [2015]. 20 examples of SVG that will make your jaw drop. English. Creative Bloq. 2015. http:
//www.creativebloq.com/design/examples-svg-7112785 (cited on page 17).

Boyce, Robert [2014]. Paper Nav. English. CodePen. 2014. https://codepen.io/rboyce/pen/wlijs (cited on
pages 11–12).

Champeon, Steven and Nick Finck [2003]. Inclusive Web Design for the Future. 2003. http://hesketh.com/
publications/inclusive_web_design_for_the_future.html (cited on page 7).

Couch, Jesse [2014]. Menu "Hamburger" Icon Animations. English. CodePen. 2014. https://codepen.io/
designcouch/pen/Atyop (cited on pages 11–12).

EvyatarDa [2015]. Navigation Animation. English. CodePen. 2015. https://codepen.io/EvyatarDa/pen/waKXMd
(cited on page 12).

Free Goodies for Designers, Bryn Taylor [2016]. Ready to use SVG icons for the web. English. SPARKK. 2016.
http://svgicons.sparkk.fr/ (cited on pages 18–19).

Gannon, Chris [2015]. SVG Rainbow Rocket Man. English. CodePen. 2015. http://codepen.io/chrisgannon/
pen/EjVyXN (cited on page 23).

Garnier, Julian [2015]. CSS 3D Solar System. English. CodePen. 2015. https://codepen.io/juliangarnier/
pen/idhuG (cited on page 23).

GreenSock [2014a]. Impossible with CSS: controls. English. CodePen. 2014. http://codepen.io/GreenSock/
pen/AwCKp (cited on page 22).

GreenSock [2014b]. Independent Transforms. English. CodePen. 2014. http://codepen.io/GreenSock/pen/
kingu (cited on page 21).

Head, Val [2016]. “Designing interface animation” [2016] (cited on pages 3–4, 7–9).

Lewis, Paul and Sam Thorogood [2016]. Web Fundamentals. CSS Versus JavaScript Animations. English.
Google Developers. 2016. https://developers.google.com/web/fundamentals/design-and-ui/animations/
css-vs-javascript (cited on page 21).

Palermo IV, J. Michael [2015]. CSS in the Modern World. English. Microsoft. 12th Nov 2015. https://www.
sitepoint.com/css-modern-world (cited on page 7).

PEXELS [2014]. CSS Only Loaders. English. PEXELS. 2014. https://www.pexels.com/blog/css-only-loaders
(cited on pages 13–15).

27

http://codepen.io/alistairtweedie/pen/GgPBqP
http://codepen.io/alistairtweedie/pen/GgPBqP
http://www.creativebloq.com/design/examples-svg-7112785
http://www.creativebloq.com/design/examples-svg-7112785
https://codepen.io/rboyce/pen/wlijs
http://hesketh.com/publications/inclusive_web_design_for_the_future.html
http://hesketh.com/publications/inclusive_web_design_for_the_future.html
https://codepen.io/designcouch/pen/Atyop
https://codepen.io/designcouch/pen/Atyop
https://codepen.io/EvyatarDa/pen/waKXMd
http://svgicons.sparkk.fr/
http://codepen.io/chrisgannon/pen/EjVyXN
http://codepen.io/chrisgannon/pen/EjVyXN
https://codepen.io/juliangarnier/pen/idhuG
https://codepen.io/juliangarnier/pen/idhuG
http://codepen.io/GreenSock/pen/AwCKp
http://codepen.io/GreenSock/pen/AwCKp
http://codepen.io/GreenSock/pen/kingu
http://codepen.io/GreenSock/pen/kingu
https://developers.google.com/web/fundamentals/design-and-ui/animations/css-vs-javascript
https://developers.google.com/web/fundamentals/design-and-ui/animations/css-vs-javascript
https://www.sitepoint.com/css-modern-world
https://www.sitepoint.com/css-modern-world
https://www.pexels.com/blog/css-only-loaders

28 BIBLIOGRAPHY

Rand, Jesse [2015]. The Genius—and Potential Dangers—of the Hamburger Icon (Flyout Menu). Meet the
Hamburger Icon. English. vital. 2015. https://vtldesign.com/web-strategy/website-design-development/
hamburger-icon-flyout-menu-website-navigation (cited on page 11).

W3Schools [2016a]. CSS3. CSS3 Animations. English. W3Schools. 2016. http://www.w3schools.com/css/css3_
animations.asp (cited on page 8).

W3Schools [2016b]. CSS3. CSS3 Transitions. English. W3Schools. 2016. http://www.w3schools.com/css/css3_
transitions.asp (cited on page 8).

W3Schools [2016c]. Examples in Each Chapter. English. W3Schools. 2016. http : / / www . w3schools . com /
graphics/svg_intro.asp (cited on page 16).

W3Schools [2016d]. Navigation Animation. English. W3Schools. 2016. http://www.w3schools.com/howto/
howto_css_loader.asp (cited on pages 13–14).

W3Schools [2016e]. SVG. SVG Titorial. English. W3Schools. 2016. http://www.w3schools.com/graphics/svg_
intro.asp (cited on pages 16–17).

Windows Dev Center [2016]. Hilo: Developing C++ Applications for Windows 7. Designing the Hilo User
Experience. English. Microsoft. 2016. https://msdn.microsoft.com/en- us/library/windows/desktop/
ff800706.aspx (cited on page 5).

https://vtldesign.com/web-strategy/website-design-development/hamburger-icon-flyout-menu-website-navigation
https://vtldesign.com/web-strategy/website-design-development/hamburger-icon-flyout-menu-website-navigation
http://www.w3schools.com/css/css3_animations.asp
http://www.w3schools.com/css/css3_animations.asp
http://www.w3schools.com/css/css3_transitions.asp
http://www.w3schools.com/css/css3_transitions.asp
http://www.w3schools.com/graphics/svg_intro.asp
http://www.w3schools.com/graphics/svg_intro.asp
http://www.w3schools.com/howto/howto_css_loader.asp
http://www.w3schools.com/howto/howto_css_loader.asp
http://www.w3schools.com/graphics/svg_intro.asp
http://www.w3schools.com/graphics/svg_intro.asp
https://msdn.microsoft.com/en-us/library/windows/desktop/ff800706.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff800706.aspx

	Contents
	List of Figures
	List of Listings
	1 Introduction
	2 Animation
	2.1 Not Just Motion!
	2.2 Why Animation in Web UI?
	2.3 Aim For Invisible Animation
	2.4 Development of Animation

	3 Cascading Style Sheets (CSS)
	3.1 Do Everything You Can With CSS
	3.2 CSS Animation Declaration
	3.2.1 Animation Property and Keframe Rule
	3.2.2 Transition Property and Selector Pattern
	3.2.3 Powerful Effect from Single Property

	3.3 CSS Examples
	3.3.1 Navigation Animation
	3.3.2 Loading Animation

	3.4 Scalable Vector Graphics (SVG)
	3.4.1 Defining Graphical Elementsin SVG
	3.4.2 Using SVG in CSS Animation

	4 JavaScript (JS)
	4.1 When to Use JS Instead of CSS
	4.2 Examples of Useful Animations with JS

	5 Concluding Remarks
	Bibliography

