
Responsive Web Design

G3 = Filip Krstanovic, Thomas Schlager, Igor Skoric

Survey Report
Part of Information Architecture and Web Usability Course 2012,
Institute for Information Systems and Computer Media (IICM),

Graz University of Technology
A-8010 Graz, Austria

03 Dec 2012

Abstract

This survey explores the term responsive web design and its components. It tries to give an overview of core
technologies related to the topic. We introduce the concept of media queries, a necessity to modern responsive
designs. A short field research analyses and interprets current responsive design trends. It finds several answers
to how and why designers use certain visual design patterns. We can conclude that it will be hard for developers
to avoid responsive design concepts in the future as it targets multiple problems of today’s web architecture
concerning the evolving device market (desktops, tablets and phones).

Further on we investigate possibilities to cope with specific multimedia elements like images and videos as
part of the web and their role in responsive design. In the end we introduce techniques that will further enhance
our user experience of the web: feature specific responsive design. A concept that adapts website content by
the visiting device’s supported features.

Contents

1 Introduction 1

2 Media Queries 2
2.1 Media types . 2

2.1.1 Definition . 2
2.1.2 Types . 2
2.1.3 Miscast types . 3

2.2 Media queries . 3
2.2.1 Definition . 3
2.2.2 Viewport . 3
2.2.3 Syntax . 3
2.2.4 Example . 4
2.2.5 Why use media queries? . 4
2.2.6 Browser support . 5

3 Responsive Design Patterns of Common Website Areas 7
3.1 Analysis Conditions . 7
3.2 Header . 8
3.3 Navigation . 8
3.4 Content . 9
3.5 Footer . 10
3.6 Break Points and Vertical Scroll Magnitude . 10

4 Responsive Media Elements 12
4.1 Images . 12

4.1.1 Alternative Resources . 12
4.1.2 JavaScript Based Rollout . 13
4.1.3 Image Cropping . 13

4.2 Audio Elements . 14
4.3 Videos . 15

4.3.1 Responsive Videos . 15
4.3.2 Html5 video players . 15

5 Feature Specific Responsive Content 17
5.1 Physical Input Devices . 17

5.1.1 Media Query: pointer . 17
5.1.2 Media Query: hover . 17
5.1.3 Zooming with Touch Gestures . 18

5.2 Alternative Properties of Display Screens . 18
5.2.1 Media Query: resolution and Display Resolution (Pixel Density) 18

i

5.2.2 Media Queries: monochrome and luminosity . 18
5.3 Providing Context for Input Fields . 18

5.3.1 Custom Input Elements . 19
5.3.2 Adaptable Virtual Inputs . 19
5.3.3 Custom Browser Actions on Non-Input Elements . 19

5.4 HTML5 APIs . 21
5.4.1 WebAudio API . 21
5.4.2 Geolocation API . 21
5.4.3 Rotation API . 21

5.5 Detecting Available Features . 21

6 Conclusion 23

Bibliography 24

ii

Chapter 1

Introduction

This survey is part of our contribution to the Information Architecture and Web Usability course held in winter
term 2012 at Graz University of Technology. It explores and explains several aspects of the responsive web
design trend. Its goal is to deliver basic understanding of underlying fundamentals, trend insights based on field
research and selected core features.

Chapter 2 introduces the technological premises necessary to implement many responsive features. Chapter
3 shows results of a field research on several heavily responsive websites which may explain certain phenomena.
Chapter 4 takes a narrower look at media elements (pictures, videos, . . .) and available methods to apply
responsive design to them. Chapter 5 focusses on responsive website content relying on features supported by
the rendering devices such as a smartphone.

In his book Marcotte [2011, p.9] defines the term Responsive Web Design as a composite of three ingredi-
ents:

• A flexible, grid-based layout

• Flexible images and media

• Media queries

While we do not completely reject this definition it seems to be a rather practical and unscientific expla-
nation. In the context of this survey we rely on a more general understanding. A website contains responsive
elements if they meet one of the following criteria:

• Elements dynamically reorganise based on available screen space to provide an optimised viewing expe-
rience on any visiting device

• Resources like images and videos are subject of context sensitive rollout adapting to the visiting device’s
needs

• Specific elements are displayed or changed in respect to the visiting device’s supported feature set

In his presentation Polacek [2012] uses a short and elegant phrase to explain responsive web design: "Re-
sponsive websites respond to their environment". The verb respond corresponds to several techniques like
offering multiple fixed width layouts or fluid grid layouts. Further on he mentions another important aspect.
The responsive website design approach focusses on developing a single site, adapting to multiple devices - not
on multiple sites for multiple devices.

1

Chapter 2

Media Queries

With the number of screen resolutions in use nowadays and the rising demands of both clients and users, web
designers face the ultimate challenge: how to enable website browsing on all those different screen resolutions
without degrading user experience.

Problems such as navigation issues, scaling/cropping of images, data tables, constriction of content, with
which designers used to struggle on a daily basis, became easier to solve thanks to media queries and other
responsive web design techniques. [Marcotte, 2011]

2.1 Media types

2.1.1 Definition

The first attempt of the W3C (World Wide Web Consortium) to solve the problems and issues that web designers
face, were the media types, part of the CSS 2 specification.

Media types were created so that we could better design for each type of browser or device, by conditionally
loading CSS tailored for each one of them. So a screen-based device would ignore CSS loaded with the print
media type, and vice versa. An “all” super-group was created for style rules meant to apply to all devices.

< l i n k r e l =" s t y l e s h e e t " h r e f =" g l o b a l . c s s " media=" a l l " / >
< l i n k r e l =" s t y l e s h e e t " h r e f =" main . c s s " media=" s c r e e n " / >
< l i n k r e l =" s t y l e s h e e t " h r e f =" p a p e r . c s s " media=" p r i n t " / >

As the media types specify a type of media to target, in our example, global.css would be loaded for all
media types, main.css only for the screen media type and paper.css for the print media type.

A @media rule specifies the target media types (separated by commas) of a set of statements (delimited by
curly braces). Invalid statements must be ignored. The @media construct allows style sheet rules for various
media in the same style sheet:

@media p r i n t { body { f o n t−s i z e : 10 p t } }
@media s c r e e n { body { f o n t−s i z e : 13 px } }
@media s c r e e n , p r i n t { body { l i n e−h e i g h t : 1 . 2 } }

2.1.2 Types

The names picked for CSS media types reflect target devices for which the relevant properties make sense.
Recognized media types are: All, Braille, Embossed, Handheld, Print, Projection, Screen, Speech, Tty, Tv.
[W3C, 2012b]

2

2.2. MEDIA QUERIES 3

2.1.3 Miscast types

When smartphones with small-screen browsers and tablets, arrived on the market, several problems with media
types became evident. Designers could have targeted them by creating a stylesheet for the handheld media type:

<link rel =" stylesheet " href="tiny . css" media="handheld"/>
The problem with this approach was that early mobile devices were ignored, because they didn’t have

sufficiently capable browsers, therefor designers were choosing to design instead compelling screen or print
specific stylesheets. When finally capable small-screen browsers appeared, there weren’t a lot of handheld CSS
files in use on the web, resulting in making screen-based stylesheets default by many mobile browser makers.

One of the problems that became obvious is that a handheld stylesheet wasn’t suited to ad¬dress the de-
signing challenges for different phones, for example, an iPhone and a five year-old feature phone.

2.2 Media queries

2.2.1 Definition

Realizing some of the drawbacks of the media types, the W3C used their work on CSS3 to take another attempt
to solve previously addressed problems. The result was media queries, which extend and improve the idea of
media types.

Rather than looking for a device type, media queries look at the capability of the device by inspecting the
physical characteristics of the devices and browsers that render our content.

They are an incredibly robust mechanism for identifying not only media types, but for actually detecting
different media features, such as:

• Width and height of the browser window ("viewport")

• Device width and height

• Orientation, i.e. is a phone or a tablet in landscape or portrait mode?

• Resolution [JavaScriptKit, 2012]

If the user has a browser that supports media queries, we can then write CSS specifically for certain situa-
tions. For example, detecting that the user has a small device like a smart phone of some description and giving
them a specific layout.

2.2.2 Viewport

Constraints such as "min-" or "max-" can be used to prefix most media features, therefor avoiding the "<" and
">" symbols, which would conflict with HTML and XML.

A new meta-tag was developed due to mobile device inconsistencies with "min / max-width" & "min /
max-device-width" and has now been integrated into the W3C’s recommendations for Mobile Web Application
Best Practices. Viewport tells the mobile device to interpret the browser width as the physical width of the
mobile device in use. 1 The viewport meta-tag needs to be placed in between the head tag "<head></head>":

<meta name="viewport" content="width=device−width, initial −scale=1.0">

2.2.3 Syntax

@media screen and (min−width: 1024px){ body { font−size: 100%; }}
Every media query consists of: [Marcotte, 2011]

• A media type: drawn from the CSS2.1 specification’s list of approved media types (see previous chapter),
in our example the media type is “screen”.

1http://www.w3.org/TR/mwabp/#bp-viewporttext

http://www.w3.org/TR/mwabp/#bp-viewporttext

4 CHAPTER 2. MEDIA QUERIES

Figure 2.1: Displaying a website on various devices in different resolutions using media queries

• Zero or more expressions that check the conditions of media features. The query itself is wrapped in
pa¬rentheses: (min-width: 1024px) and consists of two components: the name of a feature (min-width)
and a corresponding value (1024px).

A media query is a logical expression that is either true or false. A media query is true if the media type
of the media query matches the media type of the device where the user agent is running and all expressions in
the media query are true. If using a media feature without specifying a value, the expression resolves to true if
the feature’s value is non-zero.

In our example this media query would be true only for media type screen with width larger than 1024px,
otherwise it would be false and ignored by the browser.

Furthermore, it is possible to construct complex media queries using logical operators, including not, and,
and only, as well as combining multiple media queries in a comma-separated list.

The not keyword negates the result of the query; for example "all and (not color)" is true for monochrome
devices regardless of media type. The only keyword hides style sheets from older browsers that don’t support
media queries:

<link rel =" stylesheet " media="only screen and (color)" href="example.css" />

2.2.4 Example

Defining max and min (browser) screen sizes for different devices:
i.e. 768px - portrait width of tablets
@media screen and (max−width: 768px){ css goes here}

i.e. 320px - portrait width of smartphones
@media screen and (max−width: 520px){ css goes here}

i.e. 1024px - landscape width of typical netbook resolutions as well as various desktop monitor resolutions
@media screen and (min−width: 1200px){ css goes here}

2.2.5 Why use media queries?

The growth of the number of smartphones and tablets produced in the last years and the diversity of screen sizes
available, made it practically unimaginable to ignore users that browse on those devices. Furthermore, building
and maintaining versions to fit each type of screen or device has become impossible. Each user deserves the best
website browsing experience possible and most of the clients today want their website to be mobile compatible,
however, that would not be even possible without the concept of “Responsive Webdesign”. [Sender 11, 2011]

2.2. MEDIA QUERIES 5

Figure 2.2: Web designing now and then
[artisttechnewmedia.com, 2012]

Only in the mobile market, there have been recorded 21 browsers, 15 OSs and 14 device vendors so far and
dozens of different screen resolutions in use. [Koch, 2012]

Moreover, if the user uses a desktop browser doesn’t necessary mean that he maximizes the browser win-
dow. A poll done by the 456bereastreet website on a sample of 1070 test subjects has shown that only 50.4%
of the respondents maximize their browser windows, from which only 20% on Mac and 65% on Windows.
[Johansson, 2007]

2.2.6 Browser support

The browser support for media queries is decent. Media Queries enjoy broad support in all modern desktop
browsers. Safari, Chrome, Opera, Mozilla support media queries from early versions, Internet Explorer just
from the latest version 9.

Things are looking good for media query support beyond the desktop browsers as well. WebKit-based
mobile browsers, such as Mobile Safari, HP’s webOS, and Android’s browser all support media queries, as
well as Opera Mobile and Opera Mini.

Unfortunately there are still browsers that have non-native media query support, such as Internet Explorer 8
and earlier versions, IE Mobile and older BlackBerry browsers. However, there are solutions available for these
problems, mostly in a form of javascript libraries such as: respond.js library, which patches support for min-
width and max-width queries in older browsers and css3-mediaqueries.js library, which makes IE5+, Firefox
1+ and Safari 2 and other older browsers transparently parse, test and apply media queries. [Koch, 2011]

6 CHAPTER 2. MEDIA QUERIES

Figure 2.3: Poll results in numbers [Johansson, 2007]

Chapter 3

Responsive Design Patterns of Common
Website Areas

To support our understanding of responsive web design we analyse several websites heavily using responsive
techniques. All sites included in this field research are sourced at Uggedal [2012] who provides a comprehen-
sive list of up to date responsive sites.

It is necessary to clarify the conditions of this practical survey. Our primary goal is to discover certain
patterns (of design decisions) to find quantitative testimony on how today’s websites implement responsive
features (ignoring any aspects of usability, accessibility or performance) Further on we try to relate specific
design choices to common website areas. It is rather difficult to find a clear scientific definition of common
website areas or elements. One could take a look at elements of web design guidelines as e.g. listed in Bowlby
[2008]. But it seems reasonable to reduce our view to structural elements as identified by the Australian Web
Advice and Policy Team [2012]:

• Header

• Navigation

• Content

• Footer

Structural elements are not limited to certain parts of a whole website1. In many cases they sustain in a
constant state on the entire site. This reduces our analysis to the front page. All structural elements contain
subelements. In our research we assume that all subelements of a website are exclusively contained within one
of the previously mentioned structural areas2. Thus the header may contain elements like a website or company
logo, search fields or social integration. Content areas usually reside below header and navigation containing
atomic pieces of informational content. Footers are located below the content containing meta information.

3.1 Analysis Conditions

The analysis is performed on two devices: a desktop computer and a tablet (the latter to check touch compat-
ibility) - both supporting media queries and JavaScript in their browsers. To analyse the structural elements’
behaviour we start with the largest possible view of a website3 and fluently decrease the browser’s window
width until it reaches 400pixels. By doing this we identify major visual break points as the website degrades its
elements (not to be confused with the graceful degradation process [Viklund, 2011; Marcotte, 2011]). 22 sites
have been analysed this way.

1We apply to the common agreement which uses the term website as a collection of single web pages [Thomas, 2009].
2Although in some situations the navigation area can be seen as a subelement of the header we ignore this by now.
3Limited by our display’s pixel width of 2560 pixels.

7

8 CHAPTER 3. RESPONSIVE DESIGN PATTERNS OF COMMON WEBSITE AREAS

3.2 Header

Patterns found in the header can be seen in figure 3.1. It shows one significant strong pattern: degrade media
elements. The simple reason behind this is the fact that headers normally contain the websites or companies’
graphic logo which designers take huge care of. It can be interpreted as it being the most cared about single
element on the website.

different layouts

remove features

use responsive grid

20% 40% 60% 80%

degrade media elements

0%

Figure 3.1: Common Design Decisions in Website Headers

Another interesting result is that more than one out of three websites completely rearrange the header
layout during the degradation process. This means that designers not only shrink spaces, reduce font sizes or
symbolise texts into images but also they freely reorder an move around elements to better fit to one another.
Also more than one out of three sites remove features from the header which is a surprisingly low value when
you take into account that the a typical degraded site is forced to use only one third or less of the original space
available. A typical element to drop out is social integration.

3.3 Navigation

Website navigation is a sensible topic challenged by several aspects including usability and accessibility. There
are many ways to accomplish navigation and many ways to make errors [Web Page Mistakes, 2008]. Our
survey does not further investigate into any of these aspects, as it focusses on design decisions themselves. But
it shall be noted that during the research we found all websites to be touch compatible4 - which is a necessity
today and closely bound to responsive web design.

Most websites project its major web pages or sub websites as a list into its navigation system (when speaking
of non degraded websites it is a horizontal list in most cases). As pointed out in figure 3.2 we can see that more
than 50% of all analysed sites converted a horizontal navigation list into vertical list at some break point.
Converting horizontal elements into vertical elements is an obvious choice if horizontal space is narrowing.

The second significant pattern in navigation systems is to collapse the major sections into a single menu
button (which will pop up the navigation if activated) which saves large parts of the space consumed. This
pattern is not dependent on the previous but often combined with is. Modern touch compatible popup menus
(with transitions) can be designed in pure CSS3 using :active and :focus pseudo classes [Lazaris, 2012].

Certain websites try to avoid the hassles of popup mechanisms by using fluid boxes for buttons or rearrang-
ing them in grid fashion. It is clear that this can only be applied to simple menus without deep hierarchical
elements. Since navigation is important to keep the site properly functioning, less than 10% of all sites remove
elements from it.

4Usable on any touchscreen only tablet or smartphone without restrictions.

3.4. CONTENT 9

0% 10% 20% 30% 40% 50% 60%

collapse main sections

use fluid box

use responsive grid

remove features

use native dropdown

horizontal to vertical list

Figure 3.2: Common Design Decisions in Website Navigation

3.4 Content

The content part of a site is altering at any time you change to a different page or section. Therefor it has to
be flexible enough to keep up with different types of content. The common answer to this problem today is
the flexible grid as described in Marcotte [2011, Chapter 2]. Our research result (as seen in figure 3.3) clearly
shows: if you are doing responsive web design and your content is complex enough you use a grid technology.

use responsive grid

use fluid boxes

0% 15% 30% 45% 60% 75%

degrade media elements

90%

Figure 3.3: Common Design Decisions in Website Content

We can also see a high penetration of fluid boxes which further improves the content’s flexibility for subele-
ment arrangement. Browsers have rather weak implementations of text justification (compared to typesetting
engines like TEX). Since fluid grid boxes become narrow at times we do not see a lot of justified text these days
(only one out of 22 in our test set).

Degrading media content is more difficult than in the header area. Two thirds of all tested sites implemented
some means to cope with this topic. Without any further investigation we assume: the more dynamic the content
is (and the more contributors you have) the more difficult it becomes to manage high quality degradation of
images or videos. E.g static front pages (of companies) have advances over sites relying on author contributions
(like magazine sites). To seriously test sites on their ability to cope with content media elements it would be a
good idea to divide them up into several content categories and compare them independently.

10 CHAPTER 3. RESPONSIVE DESIGN PATTERNS OF COMMON WEBSITE AREAS

3.5 Footer

Analysing the footer part of websites partially led to a rather unexpected results. Prior we assumed: if space is
shrinking the footer would be a good place to remove several elements. But as shown in figure 3.4 we can see
that actually only a small portion of all web sites do this.

60%0% 15% 30% 45%

text contained in fluid boxes

uses repsonsive grids

transform horizontal lists
into vertical lists

remove elements

transfrom vertical list
into horizontal list

Figure 3.4: Common Design Decisions in Website Footer

The usage of responsive grid ordering is another surprise. Compared with the content area (dynamic con-
tent, flexible grids) the footer is almost as static as the website header. A possible explanation for this disparity
between header and footer is the on page location. The top spot of a website is carefully organised to manage
the available space above the content. In contrast at the bottom of a website it seems rather unimportant how
much space an element takes. This idea is also supported by the previous pattern of this section.

3.6 Break Points and Vertical Scroll Magnitude

Our investigation shows that there is a sweet spot of two major break points used on responsive websites (see
figure 3.5a). This number is a pure technical value representing the granularity of degradation or enhancement
the developer saw fit. The sweet spot of two may be seen as a reflection of today’s device landscape. Desktop
computers, tablet computers and smartphones demand three different sizes and need at least two break points.

If you constantly resize browser windows (like we did during testing) an increasing number of break points
makes it harder to follow and identify changing elements, especially on complex layouts. But this has less or
no effect on real world use cases where screen space is either static or window size isn’t changed more than
once to fit use.

Another consideration (in the context of responsive design) is a website’s vertical scroll magnitude com-
paring full scale sites and their degraded counterparts:

• A website when rendered at its maximum width setting (usually manually set in a style sheet between
1000 and 1400 pixels) has a vertical magnitude (which can e.g. be measured in pixels or relative to the
current window size).

• The same website degraded to a reasonable smartphone width setting (in our test case 400 pixels) has
a different vertical magnitude (horizontal elements transform to vertical ones, fluid boxes narrow down
and expand vertically, . . .).

• Comparing these two magnitudes results in a transformation factor (without dimension). A transforma-
tion factor of 1.3 means: a full size web site increases 1.3 times in vertical magnitude when degraded to

3.6. BREAK POINTS AND VERTICAL SCROLL MAGNITUDE 11

0%

13%

25%

38%

50%

1 2 3 4 5
(a) Number of Major Break Points

0.5-1x 1-1.5x 1.5-2x
0%

20%

40%

60%

80%

v.-size
relative to
max-setup

(b) Transformation Factor

Figure 3.5: Break Points and Vertical Magnitude

smartphone size of 400 pixels. We want to clearly state that this is by no means a standard testing proce-
dure or common website feature. We just found it interesting enough to note down the height values to
see if there is any significant outcome.

Figure 3.5b shows a breakdown in three categories of vertical transformation factors:

• Sites which shrink (0.5− 1.0)

• Sites which slightly grow (1.0− 1.5)

• Sites which significantly grow (1.5− 2.0)

We can see that most of the websites in our test set significantly grow vertically when being degraded.
While an increase between 1.5 and 2.0 is not a horrifying number we think there is room for improvement
concerning this topic. We saw sites when rendered on a smartphone take up ten or more vertical screen sizes
which makes it harder to locate content subelements.

All relevant recorded data can be found in Appendix A. It contains:

• List of analysed websites

• Found patterns

• Percentage calculations

Chapter 4

Responsive Media Elements

4.1 Images

Images in websites are as common as text - standard. Developing responsive website designs mostly focusses
on how to effectively use available space and degrade or enhance specific contained website elements (structure
and content). While images themselves can either be scaled or cropped there are many technical ways to achieve
these effects. But available space is not always the only concern. When talking about smartphones and mobile
connectivity, bandwidth usage and download speeds are increasingly important. As Marcotte [2011, p. 44-49]
points out, the trivial approach to flexible images is using the basic CSS property max-width:

img { max−wid th :100%; }

A big problem arises when looking at the results of CSS scaled images. Certain browser do not support
or are weak at scaling images this way which can lead to serious artefacts in high resolution images (mostly
on earlier versions of Internet Explorer). This problem can partially be conquered by using workarounds with
browser specific stylesheets and code snippets. In general working with calculated percentage values can deliver
some design benefit but remains with limitations. [Marcotte, 2011]

4.1.1 Alternative Resources

The Responsive Images Community Group is currently working on an unofficial draft of an HTML extension
called Picture. The idea behind this new tag is to provide all means to define alternative sources for images
which can then be controlled by pure CSS and combined with media queries. The syntax looks like this:

< p i c t u r e >
< s o u r c e media=" (min−wid th : 45em) " s r c s e t =" l a r g e . j p g ">
< s o u r c e media=" (min−wid th : 18em) " s r c s e t =" medium . j p g ">
< s o u r c e s r c s e t =" s m a l l . j p g ">

< / p i c t u r e >

Right now using the picture tag is rather unappealing because it is only supported by the Chromium browser.
In addition it does not take the previously mentioned need for download efficiency into account. Being com-
pletely independent from HTTP requests it has no effect on wether a resource is actually downloaded. [rICG,
2012]

Another (yet unsupported) approach loosely connected to the picture tag is presented by Gallagher [2011].
It uses the CSS3 extension attr() to combine media queries with multiple data source attributes in the original
img tag. It suffers the same weaknesses.

Roberts [2011] provides a working solution to swap different sizes of images using CSS only. He uses a
combination of background images and img tags. Based on a media query it is possible move in smaller and
hide larger images when degrading a website. Sample pseudo code:

12

4.1. IMAGES 13

< d i v c l a s s =" r−img " s t y l e =" background : u r l (l a r g e . png) ; wid th : . . ; h e i g h t : . . ; ">

< / d i v >

With CSS properties:

. r−img img{
/ * Hide image o f f−s c r e e n on l a r g e r d e v i c e s * /
p o s i t i o n : a b s o l u t e ;
l e f t :−9999 px ;

}

@media (max−wid th :480 px) {
. r−img{

/ * Remove s t y l i n g from t h e d i v * /
background : none ! i m p o r t a n t ;
w id th : a u t o ! i m p o r t a n t ;
h e i g h t : a u t o ! i m p o r t a n t ;

}
. r−img img{

/ * Br ing s m a l l e r image back i n t o v iew * /
p o s i t i o n : s t a t i c ;
max−wid th :100%;

}
}

4.1.2 JavaScript Based Rollout

Currently only JavaScript provides all means to cope with both the demands for dynamic sizing and down-
load efficiency. This paragraph shortly describes the method introduced by Jehl [2010] at the Filament Group.
A JavaScript embedded at the top of the delivered html content rewrites the BASE element and redirects all
further requests (stylesheets, images, . . .) into a fictional subdirectory. Using a special .htaccess file the web
server identifies responsive image requests (which have a predefined string in their name) and redirects them
to a transparent single pixel image. Requests without the special string are redirected to their original location
outside the fictional directory. After the DOM creation has completed, the JavaScript changes the BASE ele-
ment back to it’s original setting and re-requests responsive images based on device resolution. This method
has two big benefits:

• On small devices it only requests smaller versions of images

• It has no effect on browsers not supporting it

A similar way is presented by Russel [2010]. It relies on the same 1-pixel-request principle. All image
requests are handled by a single PHP script. At DOM creation time the html code invokes browser requests to
the PHP file which without further parameters will return a single pixel sized image. After DOM creation is
finished a JavaScript calculates images fluid sizes and rewrites their src attributes to include a GET parameter
for resolution. At the new request the PHP script will serve a suitable image. This method will not show images
when JavaScript is unavailable.

4.1.3 Image Cropping

CSS3 specification includes a proper crop property as described on CSS-Portal [2012]. Sadly as of today there
is no browser support for this property. The related and similar property clip (described on W3Schools.com
[2012]) in contrast is well supported. But clipping an image does not solve any space saving problems. Marcotte
[2011] introduces a weak cropping mechanism using the CSS overflow property which makes images look

14 CHAPTER 4. RESPONSIVE MEDIA ELEMENTS

cropped by hiding the overflown parts of background images in div containers. But this way the cropping
window’s top left corner is limited to start at coordinates (0,0) at any time.

By using certain CSS tricks it is still possible to achieve cropping behaviour today. When combining
property overflow with negative margins, div contained images can be properly cropped. Example:

< s t y l e >
. c rop { wid th : 200 px ; h e i g h t : 150 px ; o v e r f l o w : h i dd en ; }
. c rop img { wid th : 400 px ; h e i g h t : 300 px ; margin : −75px 0 0 −100px ; }

< / s t y l e >
. . .
< d i v c l a s s =" c rop ">

< / d i v >

The principle relies on the simple fact that CSS margins can be negative (see [Imbong, 2009]). In that way
an outer div element can define the cropping window and the margins of the contained img tag move it relative
to the clip area - creating a crop effect. [O’Rourke, 2009]

4.2 Audio Elements

The HTML5 specification offers an <audio> tag with an automatic fallback mechanism. A simple html code
looks like the example in listing 4.1. The user agent is expected to go trough the list of source elements and use
the first one that it supports.

< a u d i o c o n t r o l s =" c o n t r o l s ">
< s o u r c e s r c =" h o r s e . ogg " t y p e =" a u d i o / ogg ">
< s o u r c e s r c =" h o r s e . mp3" t y p e =" a u d i o / mpeg ">

Your b rowse r does n o t s u p p o r t t h e a u d i o e l e m e n t .
< / a u d i o >

Listing 4.1: HTML5 Audio Element Example[W3Schools
Audio Tag]

Supported formats so far are mp3, wav and ogg. Combining mp3 and either ogg or wav provides full browser
support coverage of major browsers [W3Schools Audio Tag].

By including another fallback mechanism in the body of the <audio> tag but outside and after the source
tags it is possible to fallback again if the default fallback runs trough without success. This fallback can be a
flash player or any other mechanism like a pure javascript player. you can see an example of this in listing 4.2.

< a u d i o i d =" a u d i o _ w i t h _ c o n t r o l s " c o n t r o l s >
< s o u r c e s r c =" t e s t . mp3" t y p e =" a u d i o / mpeg " / >

< o b j e c t c l a s s =" p l a y e r p r e v i e w " t y p e =" a p p l i c a t i o n / x−shockwave−f l a s h "
d a t a =" p laye r_mp3_min i . swf " wid th =" 200 " h e i g h t =" 20 ">

<param name=" movie " v a l u e =" p laye r_mp3_min i . swf " / >
<param name=" b g c o l o r " v a l u e =" #085 c68 " / >
<param name=" F l a s h V a r s " v a l u e ="mp3= t e s t . mp3" / >
<embed h r e f =" p laye r_mp3_min i . swf " b g c o l o r =" #085 c68 " wid th =" 200 "

h e i g h t =" 20 " name=" movie " a l i g n =" "
t y p e =" a p p l i c a t i o n / x−shockwave−f l a s h " f l a s h v a r s ="mp3= t e s t . mp3">

< / embed>
< / o b j e c t >

< / a u d i o >

4.3. VIDEOS 15

< d i v i d =" p l a y e r _ f a l l b a c k ">< / d i v >
< s c r i p t >

i f (document . c r e a t e E l e m e n t (’ audio ’) . canPlayType) {
i f (! document . c r e a t e E l e m e n t (’ audio ’) . canPlayType (’ a u d i o / mpeg ’)) {

. . . SWFObject s c r i p t l i n e h e r e . . .
document . g e t E l e m e n t s B y I d (’ a u d i o _ w i t h _ c o n t r o l s ’) . s t y l e . d i s p l a y = ’ none ’ ;

}
}

< / s c r i p t >

Listing 4.2: HTML5 Audio Element Advanced Example[HTML5Rocks Audio Element Guide]

Audio elements have default controls and style, but can be replaced entirely and restyled completely while
preserving compatibility and function. There are JavaScript Libraries that offer custom controls and automatic
fallback handling to flash. One example is the jPlayer JS library which is completely free and open source
[jPlayer].

4.3 Videos

4.3.1 Responsive Videos

Videos are becoming an important marketing tool on many websites, therefore the need to incorporate respon-
sive videos into designs is growing dramatically. Responsive videos are elastic and are especially favored where
web pages will be viewed on different screen sizes using a variety of browsers. Until now the playing of a video
was either with a Flash player or with Quick Time, of which both relied on third party plugins. Since most of the
web is based on video sharing and third party plugins always slow down the page, therefore making browsers
slower, the new “video” tag in HTML5 proved to be quite useful. [Developer Drive, 2012]

*When handling video embed code that uses iframes and objects tags, using the HTML5 video element,
however is not enough, therefore it will not work for video found on most video sharing sites like YouTube
and Vimeo. In order to tackle this, it is needed to embed the code with a <div> container and specify the child
elements with absolute positions. In this case, give 100% to both width and height, thereby forcing the embed
elements to automatically expand full width. [Web Designer Wall, 2011]

video {max−width: 100%;height: auto;}

4.3.2 Html5 video players

There are 24 different html5 video players known so far, with each having different features, specialties and
approaches. Knowing the differences between them is important to be able to choose the best HTML5 based
video player possible in accordance to the needs of a project. Some of the popular among them are: [VideoSWS,
2012]

Video for Everybody

Video for Everybody is HTML code that embeds a video into a website using the HTML5 <video> element,
falling back to Flash automatically without the use of JavaScript or browser-sniffing. Case they both fail, a
placeholder image is shown and the user can download the video using the links provided.
Everything is completely done without JavaScript and requires two video encodes, one Ogg file, and one MP4
file, however if the user does not have Flash they are not prompted to install it. [CamenDesign, CD2010]

Video.js

Video.js is a JavaScript and CSS library which makes easier to work with and build on HTML5 video. Video.js
provides common controls built in HTML/CSS, fixes cross-browser inconsistencies, adds additional features

16 CHAPTER 4. RESPONSIVE MEDIA ELEMENTS

like fullscreen and subtitles, manages the fallback to Flash or other playback technologies when HTML5 video
isn’t supported, and also provides a consistent JavaScript API for interacting with the video. [VideoJS, 2012]

MediaElement.js

Provides the same user interface on any browser using HTML5 audio and video players in pure HTML and
CSS as well as Custom Flash and Silverlight players that mimic the HTML5 MediaElement API for older
browsers giving the user consistent experience regardless of what codecs and plugins their browser supports.
[MediaElements.js, 2012]

HTML5 Video

HTML5video.org is an online community of web developers and the home of the Kaltura open source video
player javascript library. HTML5 Enables Web Pages to playback and manipulate video and audio across
platforms and devices - powering amazing rich-media applications that work everywhere. [Html5Video.org,
2012]

Chapter 5

Feature Specific Responsive Content

Usually the main focus area of responsive design is the width and height of the Viewport (Browser Window) and
the problem of fitting and reordering the content to fill it appropriately. Worded differently it is the handling of
lack or abundance of space or the shape of it. But Viewport space properties are only one aspect of the display
device capabilities which may impact the experience of the user. There are other features which may be worth
considering when designing the appearance or usability of your website.

5.1 Physical Input Devices

One important device feature which may influence your design decisions are the capabilities of input controls.
The W3C has proposed new queries for the fourth edition of the Media Queries specification[Media Queries
Level 4 Draft] to address the availability and properties of these.

5.1.1 Media Query: pointer

This Media Query allows to detect the presence and the accuracy of an attached pointer device. This Query can
use three different values: ’none’, ’coarse’ and ’fine’.

Both ‘coarse’ and ‘fine’ indicate the presence of a pointing device, but differ in accuracy. A
pointing device with which it would be difficult or impossible to reliably pick one of several small
adjacent targets would qualify as ‘coarse’.
Typical examples of a ‘fine’ pointing system are a mouse, a track-pad or a stylus-based touch
screen. Finger-based touch screens would qualify as ‘coarse’.

The specification contains a provision for the user agent to give a value of ’coarse’ even if an input device is
present which can be considered ’fine’ but the user may have indicated that they have trouble controlling the
input device accurately.

5.1.2 Media Query: hover

This media query allows for detection of a input device that allows hovering over elements to display informa-
tion, navigational cues or other information or design changes. According to the W3C the user agent should
always return the value which is indicative of the least capable device attached.

If a device has multiple pointing devices, some of which support hovering and some of which
not, it is recommended that the UA reports the hovering ability of the least capable of the primary
pointing devices.

Additionaly, the designer may not assume that a device which returns ’0’ does not display the pseudoclass
:hover but only that it requests a version of the website which is usable without the hover mechanic. Again, the
UA may return ’0’ contrary to device capability to suit the accesibility needs of the user.

17

18 CHAPTER 5. FEATURE SPECIFIC RESPONSIVE CONTENT

5.1.3 Zooming with Touch Gestures

One special point that needs to be considered when thinking about input devices is that touch devices do not
only have limitations but often in contrast allow the user to do a few special actions with your page which they
can not do with a traditional PC device. The most prominent of those is the possibility to zoom into your page
without actually changing the viewport or font scaling.

One functionality which is often called pinch to zoom may provide the user of a close-up view of web page
elements that are not designed to be viewed that way. This is one of the cases in which vector images have a
clear advantage because of the way they behave when scaled by the client.

Another functionality is called double-tap zoom and aligns the zoom level to the size of the tapped element.
Sizing your website elements properly to take advantage of this might make your website more usable.

5.2 Alternative Properties of Display Screens

Besides the default properties already well known and used like width, height, device-width, device-height and
orientation there are few display device features which are worth mentioning and might affect user experience.

5.2.1 Media Query: resolution and Display Resolution (Pixel Density)

Using the case of the current introduction of Retina screens to the consumer PC product line of Apple Comput-
ers but also the ever-increasing pixel density on small devices like smartphones, one should consider the actual
space that website elements take up on the display device. The W3C MQ4 Draft proposes the query resolution
to aid in detecting this property.

While the iPhone 3GS had a PPI (Pixel per Inch, often incorrectly DPI, dots per inch) of 163 its successor,
the iPhone 4 had 326 PPI. This means that an image or website element that displayed on 1 inch of actual
surface on the iPhone 3 would only be 1

4 of an inch big on the iPhone 4. Same is true for the laptop computers
or home PCs with similar differences in PPI. On the other hand designers might want to use higher resolution
images and icons because the device is actually capable of displaying them.

Website designers might consider making their breakpoints dependent on more than pure pixel widths and
take into account the pixel density of the target device.

5.2.2 Media Queries: monochrome and luminosity

Another one of the features in the upcoming Media Queries 4 Draft is luminosity which overlaps somewhat
with the already implemented query monochrome.

Monochrome allows for detection of devices with monochrome displays. Those are displays that are only
capable of displaying shades of one color. A recent example are all kinds of eReader devices with e-Paper or
e-Ink displays. Those displays offer great contrast but lack the ability to display color information.

The Query luminosity allows for communicating the brightness of the environment in which the display
device operates. It does so in three levels called ’dim’, ’normal’ and ’washed’ in increasing order of brightness.
The W3C does however avoid defining exact brightness in lux as the value might change according to already
present automatic brightness adjustment of the screen and other factors.

Both of these queries prompt the website to offer high-contrast versions that are either usable in environ-
ments or devices which are not hospitable to nuanced color design or might even be blindingly bright in a dimly
lit room.

5.3 Providing Context for Input Fields

Everything up to this point was about reacting to the features and properties of the device which is displaying
our website. But there is also a way in which a designer might help the user device provide additional flexibility

5.3. PROVIDING CONTEXT FOR INPUT FIELDS 19

and usability by proactively declaring potential to do so. A very good way to do that is the usage of HTML5
input type declarations.

Many websites offer some functionality which prompts the user for input and expects a certain format of
that input. By using HTML5 input types the user device can offer customized input controls, particularily on
touchscreen devices with virtual keyboards which can be customized easily but also to some degree on other
devices. Possible tags are seen in listing 5.1.

Additionaly, devices might offer automatic input format validation and aid the user in complying with the
required format of the input field.

< i n p u t t y p e =" c o l o r ">
< i n p u t t y p e =" d a t e ">
< i n p u t t y p e =" d a t e t i m e ">
< i n p u t t y p e =" d a t e t i m e− l o c a l ">
< i n p u t t y p e =" e m a i l ">
< i n p u t t y p e =" month ">
< i n p u t t y p e =" number ">
< i n p u t t y p e =" r a n g e ">
< i n p u t t y p e =" s e a r c h ">
< i n p u t t y p e =" t e l ">
< i n p u t t y p e =" t ime ">
< i n p u t t y p e =" u r l ">
< i n p u t t y p e =" week ">

Listing 5.1: HTML5 input fields with type declaration[W3C, 2012a]

5.3.1 Custom Input Elements

One of the browsers providing custom input controls is Google Chrome. A few examples can be seen in
figure 5.1 which also features a triggered form validation failure message. Although the same browser is used
for displaying the date picker control in figure 5.2 the browser displays entirely different controls. For the
desktop computer with a ’fine’ accuracy pointer device the browser displays a calendar grid. For the touch
device though it displays three rolling wheels, one for each continous part of the input value. This enhanced
functionality does not require any additional effort from the website designer and integrates seamlessly into the
device usability paradigms.

5.3.2 Adaptable Virtual Inputs

A different form of providing better inputs is the adaptation of virtual controls like keyboards by introducing
subtle but important changes. Offering additional buttons or offering a whole new set of keys that are pres-
elected based on the input type can greatly speed up the input and at the same time minimize frustration. In
figure 5.3 you can see the different keyboard versions offered up by the iPhone when focusing input fields of
different types.

5.3.3 Custom Browser Actions on Non-Input Elements

Input elements are not the only html elements that may provide ways for the display device to react in an appro-
priate way. One additional way is a custom protocol definition in an <a> tag href attribute as seen in listing 5.2.
When the resulting link is clicked on a modern mobile phone with iOS or Android OS it automatically switches
th the call application and copies the linked number, effectively enabling calling with two clicks.

<a h r e f =" t e l :555−1212 "> C a l l < / a>

Listing 5.2: Custom HREF link

20 CHAPTER 5. FEATURE SPECIFIC RESPONSIVE CONTENT

Figure 5.1: Custom Input Controls and Form Validation (Chrome, Windows 7)

Figure 5.2: Date Input Controls (Chrome, Windows 7 and Android)

5.4. HTML5 APIS 21

Figure 5.3: Keyboard Adaptation based on Input Field Type (Safari, iPhone)

5.4 HTML5 APIs

There are a number of HTML5 APIs that can be made available trough the browser and may offer interesting
functionality to the website.

5.4.1 WebAudio API

This API offers Audio Services like Text-To-Speech over device loudspeakers and Speech-Recognition trough
a device microphone. It also offers direct manipulation of audio streams.

5.4.2 Geolocation API

This API offers locating the users current position at any time trough usage of a devices built in GPS antenna
and network provider supported triangulation information.

5.4.3 Rotation API

This API offers the ability to detect positional changes in a device’s and acceleration values.

5.5 Detecting Available Features

Most of the features which are not yet covered my media queries (e.g. geolocation) can be detected by using
JavaScript workarounds which work as follows:

1. Use API / Create Element

2. Check for Success

3. If success→ load ressources / execute enhancement

4. If failure→ load / execute fallback

Fortunately there are JavaSCript libraries which take care of all the details and offer a simple API for the
end user. One very popular and well maintained library is Modernizr (http://modernizr.com) which can
be used by including code as seen in listing 5.3. If the feature defined in ’test’ is found to be available then
the sourcecode defined in ’yep’ is executed. If the feature is lacking, then the code found at ’nope’ is executed
instead.

http://modernizr.com

22 CHAPTER 5. FEATURE SPECIFIC RESPONSIVE CONTENT

Modern iz r . l o a d ({
t e s t : Modern iz r . g e o l o c a t i o n ,
yep : ’ geo . j s ’ ,
nope : ’ geo−p o l y f i l l . j s ’

}) ;

Listing 5.3: Modernizr Example[Modernizr
Documentation]

Chapter 6

Conclusion

We can see that the idea of responsive web design is still in an early development state. Still we conclude it to
be the best choice for platform independent and future proof web design now. There is a certain lack of golden
rules to achieve proper web design. Today it is pretty much up to any single developer to decide how many
break points or actual layouts to use.

Media queries are there and officially supported by many browsers. An increasing number of websites is
relying on them. Still they are only a technological necessity to responsive web design and are just part of a
bigger solution to classic web design issues in the context of mobile computing.

Our field research shows that there are several common responsive patterns evolving which even relate to
specific website elements. An increased number of websites and better categorical analysis could deliver more
distinct and comprehensive results. But this would have been out of reach of this survey.

Today there is a lack of officially supported and standardised ways to achieve a vital part of responsive web
design: responsive multimedia content. As explained in chapter 4 working with images can be quite a hassle
when relying on plain web standards HTML and CSS. In many situations only appropriate JavaScript modules
and server side rollout can deliver good responsive concepts.

Chapter 5 introduces several elements that can not only improve basic web design but enhance our overall
web experience by transforming classic rendered web contents into interactive applications with support for
special input devices, geo location and other features.

23

Bibliography

artisttechnewmedia.com [2012]. Responsive Web Design Image. Last checked: December 3rd. 2012. http:
//www.artistechnewmedia.com/thenest/wp-content/uploads/2012/03/responsive-

web-design.jpg (cited on page 5).

Australian Web Advice and Policy Team [2012]. Common page elements. Last checked: December 2nd. 2012.
http://webguide.gov.au/finding-content/page-elements/ (cited on page 7).

Bowlby, Selene M. [2008]. 15 Key Elements All Top Web Sites Should Have. Last checked: December 2nd.
2008. http://freelancefolder.com/15-top-site-elements/ (cited on page 7).

CamenDesign [CD2010]. Video for Everybody! Last checked: December 3rd. CD2010. http://camendesign.
com/code/video_for_everybody#video-what (cited on page 15).

CSS-Portal [2012]. CSS crop Property. Last checked: December 2nd. 2012. http://www.cssportal.com/
css-properties/crop.htm (cited on page 13).

Developer Drive [2012]. Adding Responsive Videos to your Design. Last checked: December 3rd. 2012. http:
//www.developerdrive.com/2012/07/adding-responsive-videos-to-your-design (cited
on page 15).

Gallagher, Nicolas [2011]. Responsive Images Using CSS3. Last checked: December 2nd. 2011. http://
nicolasgallagher.com/responsive-images-using-css3/ (cited on page 12).

HTML5Rocks Audio Element Guide. http://www.html5rocks.com/en/tutorials/audio/quick.
http://www.html5rocks.com/en/tutorials/audio/quick (cited on page 15).

Html5Video.org [2012]. HTML5 Video. Last checked: December 3rd. 2012. http://html5video.org (cited
on page 16).

. jPlayer. http://www.jplayer.org/. http://www.jplayer.org/ (cited on page 15).

http://www.w3schools.com. W3Schools Audio Tag. http://www.w3schools.com/html/html5_
audio.asp. http://www.w3schools.com/html/html5_audio.asp (cited on page 14).

Imbong, John [2009]. The Definitive Guide to Using Negative Margins. Last checked: December 2nd. 2009.
http://coding.smashingmagazine.com/2009/07/27/the-definitive-guide-to-using-

negative-margins/ (cited on page 14).

JavaScriptKit [2012]. Introduction to CSS Media Queries. Last checked: December 3rd. 2012. http://www.
javascriptkit.com/dhtmltutors/cssmediaqueries.shtml (cited on page 3).

Jehl, Scott [2010]. Responsive Images: Experimenting with Context-Aware Image Sizing. Last checked: De-
cember 2nd. 2010. http://filamentgroup.com/lab/responsive_images_experimenting_
with_context_aware_image_sizing/ (cited on page 13).

24

http://www.artistechnewmedia.com/thenest/wp-content/uploads/2012/03/responsive-web-design.jpg
http://www.artistechnewmedia.com/thenest/wp-content/uploads/2012/03/responsive-web-design.jpg
http://www.artistechnewmedia.com/thenest/wp-content/uploads/2012/03/responsive-web-design.jpg
http://webguide.gov.au/finding-content/page-elements/
http://freelancefolder.com/15-top-site-elements/
http://camendesign.com/code/video_for_everybody#video-what
http://camendesign.com/code/video_for_everybody#video-what
http://www.cssportal.com/css-properties/crop.htm
http://www.cssportal.com/css-properties/crop.htm
http://www.developerdrive.com/2012/07/adding-responsive-videos-to-your-design
http://www.developerdrive.com/2012/07/adding-responsive-videos-to-your-design
http://nicolasgallagher.com/responsive-images-using-css3/
http://nicolasgallagher.com/responsive-images-using-css3/
http://www.html5rocks.com/en/tutorials/audio/quick
http://www.html5rocks.com/en/tutorials/audio/quick
http://html5video.org
http://www.jplayer.org/
http://www.jplayer.org/
http://www.w3schools.com
http://www.w3schools.com/html/html5_audio.asp
http://www.w3schools.com/html/html5_audio.asp
http://www.w3schools.com/html/html5_audio.asp
http://coding.smashingmagazine.com/2009/07/27/the-definitive-guide-to-using-negative-margins/
http://coding.smashingmagazine.com/2009/07/27/the-definitive-guide-to-using-negative-margins/
http://www.javascriptkit.com/dhtmltutors/cssmediaqueries.shtml
http://www.javascriptkit.com/dhtmltutors/cssmediaqueries.shtml
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/

BIBLIOGRAPHY 25

Johansson, Roger [2007]. Poll results: 50.4 percent of respondents maximise windows. Last checked: December
3rd. 2007. http://www.456bereastreet.com/archive/200704/poll_results_504_of_
%20respondents_maximise_windows (cited on pages 5, 6).

Koch, Peter-Paul [2011]. Mobile Browsers. Last checked: December 3rd. 2011. http://www.quirksmode.
org/mobile/browsers.html (cited on page 5).

Koch, Peter-Paul [2012]. Mobile market overview. Last checked: December 3rd. 2012. http : / / www .
quirksmode.org/mobile/mobilemarket.html (cited on page 5).

Lazaris, Louis [2012]. CSS3 Transitions Without Using :hover. Last checked: December 2nd. 2012. http:
//www.impressivewebs.com/css3-transitions-without-hover/ (cited on page 8).

Marcotte, Ethan [2011]. Responsive Web Design. Edited by Mandy Brown. Jeffrey Zeldman, 2011 (cited on
pages 1–3, 7, 9, 12, 13).

MediaElements.js [2012]. HTML5 video and audio made easy. One file. Any browser. Same UI. Last checked:
December 3rd. 2012. http://mediaelementjs.com/ (cited on page 16).

Modernizr Documentation. http://modernizr.com/docs/ (cited on page 22).

O’Rourke, Robert [2009]. CSS Display an Image Resized and Cropped. Last checked: December 2nd. 2009.
http://stackoverflow.com/questions/493296/css-display-an-image-resized-and-

cropped (cited on page 14).

Polacek, John [2012]. What The Heck Is Responsive Web Design? Last checked: December 2nd. 2012. http:
//johnpolacek.github.com/scrolldeck.js/decks/responsive/ (cited on page 1).

rICG [2012]. The Picture Element - An HTML Extension for Adaptive Images. Last checked: December 2nd.
2012. http://picture.responsiveimages.org (cited on page 12).

@rivoal.net>, Florian Rivoal <florian. Media Queries Level 4 Draft. http : / / dev . w3 . org / csswg /
mediaqueries4 (cited on page 17).

Roberts, Harry [2011]. Responsive images right now. Last checked: December 2nd. 2011. http://csswizardry.
com/2011/07/responsive-images-right-now/ (cited on page 12).

Russel, Craig [2010]. Responsive Images and Context Aware Image Sizing. Last checked: December 2nd. 2010.
http://craig-russell.co.uk/2011/01/22/responsive-images-and-context-aware-

image-sizing.html#.ULvQt6U7018 (cited on page 13).

Sender 11 [2011]. Mobile screen size trends. Last checked: December 3rd. 2011. http : / / sender11 .
typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/

sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/

04/mobile-screen-s.html (cited on page 4).

Thomas, John [2009]. The Difference – Websites vs. Web Pages. Last checked: December 2nd. 2009. http:
//innovationsimple.com/web-design/website-vs-webpage/ (cited on page 7).

Uggedal, Eivind, editor [2012]. A collection of inspirational websites using media queries and responsive web
design. Last checked: December 2nd. 2012. http://mediaqueri.es (cited on page 7).

VideoJS [2012]. HTML5 Video, Now Available Everywhere. Last checked: December 3rd. 2012. http://
videojs.com/ (cited on page 16).

VideoSWS [2012]. HTML5 Video Player Comparison. Last checked: December 3rd. 2012. http://praegnanz.
de/html5video/ (cited on page 15).

http://www.456bereastreet.com/archive/200704/poll_results_504_of_%20respondents_maximise_windows
http://www.456bereastreet.com/archive/200704/poll_results_504_of_%20respondents_maximise_windows
http://www.quirksmode.org/mobile/browsers.html
http://www.quirksmode.org/mobile/browsers.html
http://www.quirksmode.org/mobile/mobilemarket.html
http://www.quirksmode.org/mobile/mobilemarket.html
http://www.impressivewebs.com/css3-transitions-without-hover/
http://www.impressivewebs.com/css3-transitions-without-hover/
http://mediaelementjs.com/
http://modernizr.com/docs/
http://stackoverflow.com/questions/493296/css-display-an-image-resized-and-cropped
http://stackoverflow.com/questions/493296/css-display-an-image-resized-and-cropped
http://johnpolacek.github.com/scrolldeck.js/decks/responsive/
http://johnpolacek.github.com/scrolldeck.js/decks/responsive/
http://picture.responsiveimages.org
http://dev.w3.org/csswg/mediaqueries4
http://dev.w3.org/csswg/mediaqueries4
http://csswizardry.com/2011/07/responsive-images-right-now/
http://csswizardry.com/2011/07/responsive-images-right-now/
http://craig-russell.co.uk/2011/01/22/responsive-images-and-context-aware-image-sizing.html#.ULvQt6U7018
http://craig-russell.co.uk/2011/01/22/responsive-images-and-context-aware-image-sizing.html#.ULvQt6U7018
http://sender11.typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/04/mobile-screen-%20http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://innovationsimple.com/web-design/website-vs-webpage/
http://innovationsimple.com/web-design/website-vs-webpage/
http://mediaqueri.es
http://videojs.com/
http://videojs.com/
http://praegnanz.de/html5video/
http://praegnanz.de/html5video/

26 BIBLIOGRAPHY

Viklund, Andreas [2011]. Graceful degradation vs. Progressive enhancement (part 1). Last checked: December
2nd. 2011. http://andreasviklund.com/learn/graceful-degradation-vs-progressive-
enhancement-part-1/ (cited on page 7).

W3C [2012a]. HTML5 Input Controls Working Draft. http://www.w3.org/TR/html-markup/input.
html. 2012 (cited on page 19).

W3C [2012b]. Recognized media types. Last checked: December 3rd. 2012. http://www.w3.org/TR/
CSS21/media.html#media-types (cited on page 2).

W3Schools.com [2012]. CSS clip Property. Last checked: December 2nd. 2012. http://www.w3schools.
com/cssref/pr_pos_clip.asp (cited on page 13).

Web Designer Wall [2011]. CSS: Elastic Videos. Last checked: December 3rd. 2011. http://webdesignerwall.
com/tutorials/css-elastic-videos (cited on page 15).

Web Page Mistakes [2008]. Website Navigation. Last checked: December 2nd. 2008. http://www.webpagemistakes.
ca/website-navigation/ (cited on page 8).

http://andreasviklund.com/learn/graceful-degradation-vs-progressive-enhancement-part-1/
http://andreasviklund.com/learn/graceful-degradation-vs-progressive-enhancement-part-1/
http://www.w3.org/TR/html-markup/input.html
http://www.w3.org/TR/html-markup/input.html
http://www.w3.org/TR/CSS21/media.html#media-types
http://www.w3.org/TR/CSS21/media.html#media-types
http://www.w3schools.com/cssref/pr_pos_clip.asp
http://www.w3schools.com/cssref/pr_pos_clip.asp
http://webdesignerwall.com/tutorials/css-elastic-videos
http://webdesignerwall.com/tutorials/css-elastic-videos
http://www.webpagemistakes.ca/website-navigation/
http://www.webpagemistakes.ca/website-navigation/

Appendix A
Pattern Analysis Data Tables

Navigation % # Websites
horizontal list -> vertical list

collapse main section into single menu

contained in fluid box
2D grid
remove features
horizontal list -> native dropdown list

0.5 12 sony.com, systemagic.co.uk, lottanieminen.com, dorigati.it, aids.gov, getdonedone.com,
microsoft.com, bigyouth.fr, wentworthmansion.com, unitedutilities.com, wm.edu,
hsgac.senate.gov

0.5 10 sony.com, systemagic.co.uk, dorigati.it, aids.gov, getdonedone.com, microsoft.com,
bigyouth.fr, wentworthmansion.com, wm.edu, hsgac.senate.gov

0.2 4 paidtoexist.com, systemagic.co.uk, vittoriovittori.com, wentworthmansion.com
0.1 3 tuj.ac.jp, , wm.edu, atlantaballet.com
0.1 2 vittoriovittori.com, atlantaballet.com
0.0 1 iso.org

Content # Websites
responsive grid

degrade media elements

fluid boxes

0.8182 18 sony.com, iso.org, evening-edition.com, systemagic.co.uk, vittoriovittori.com,
lottanieminen.com, dorigati.it, aids.gov, microsoft.com, keynesforkids.com,
responsiveprocess.com, bigyouth.fr, wentworthmansion.com, tuj.ac.jp,
introducingthenovel.com, wm.edu, hsgac.senate.gov, atlantaballet.com

0.6818 15 paidtoexist.com, lottanieminen.com, dorigati.it, aids.gov, getdonedone.com, microsoft.com,
keynesforkids.com, responsiveprocess.com, bigyouth.fr, wentworthmansion.com, tuj.ac.jp,
introducingthenovel.com, wm.edu, hsgac.senate.gov, atlantaballet.com

0.8182 18 iso.org, paidtoexist.com, evening-edition.com, systemagic.co.uk, vittoriovittori.com,
dorigati.it, aids.gov, getdonedone.com microsoft.com, keynesforkids.com,
responsiveprocess.com, bigyouth.fr, wentworthmansion.com, unitedutilities.com,
introducingthenovel.com, wm.edu, hsgac.senate.gov, atlantaballet.com

Header # Websites
degrade media elements

completely rearrange items

remove features

responsive grid

0.7727 17 sony.com, iso.org, evening-edition.com, systemagic.co.uk, dorigati.it, aids.gov,
getdonedone.com, oxideinteractive.com.au, microsoft.com, keynesforkids.com,
responsiveprocess.com, bigyouth.fr, wentworthmansion.com, tuj.ac.jp,
introducingthenovel.com, hsgac.senate.gov, atlantaballet.com

0.3636 8 sony.com, iso.org, systemagic.co.uk, dorigati.it, aids.gov, microsoft.com, unitedutilities.com,
atlantaballet.com

0.3636 8 iso.org, dorigati.it, aids.gov, oxideinteractive.com.au, bigyouth.fr, unitedutilities.com,
wm.edu, hsgac.senate.gov

0.2273 5 paidtoexist.com, vittoriovittori.com, wentworthmansion.com, tuj.ac.jp, wm.edu

Footer # Websites
responsive grid

fluid boxes

horizontal lists -> vertical lists
remove featuers
vertical lists -> horizontal lists

0.5909 13 systemagic.co.uk, vittoriovittori.com, dorigati.it, aids.gov, getdonedone.com, microsoft.com,
keynesforkids.com, bigyouth.fr, wentworthmansion.com, tuj.ac.jp, wm.edu,
hsgac.senate.gov, atlantaballet.com

0.5909 13 iso.org, paidtoexist.com, evening-edition.com, systemagic.co.uk, vittoriovittori.com,
dorigati.it, aids.gov, microsoft.com, keynesforkids.com, bigyouth.fr, wentworthmansion.com,
tuj.ac.jp, introducingthenovel.com

0.2273 5 sony.com, getdonedone.com, wentworthmansion.com, unitedutilities.com, atlantaballet.com
0.1364 3 systemagic.co.uk, dorigati.it, hsgac.senate.gov
0.0455 1 aids.gov

Major Breakpoints # Websites
1
2

3

4
5

0.1818 4 evening-edition.com, getdonedone.com, keynesforkids.com, unitedutilities.com
0.4545 10 sony.com, lottanieminen.com, dorigati.it, oxideinteractive.com.au, responsiveprocess.com,

wentworthmansion.com, bigyouth.fr, tuj.ac.jp, introducingthenovel.com, wm.edu
0.2727 6 paidtoexist.com, vittoriovittori.com, aids.gov, microsoft.com, hsgac.senate.gov,

atlantaballet.com
0.0455 1 iso.org
0.0455 1 systemagic.co.uk

Websites #
All

Uses block typesetting

22 sony.com, iso.org, systemagic.co.uk, vittoriovittory.com, paidtoexist.com, evening-edition.com,
lottanieminen.com, dorigati.it, aids.gov, getdonedone.com, oxideinteractive.com.au, microsoft.com,
keynesforkids.com, responsiveprocess.com, bigyouth.fr, wentworthmansion.com,
unitedutilities.com, tuj.ac.jp, introducingthenovel.com, wm.edu, hsgac.senate.gov, atlantaballet.com

1 introducingthenovel.com

Vertical Size Factor
Max width -> 400px
(only if there is a maximum width within
2560px)

#

0,5-1
1-1.5
1.5-2

2 oxideinteractive.com.au, unitedutilities.com
2 systemagic.com, paidtoexist.com
17 wm.edu, sony.com, iso.org, vittoriovittori.com, evening-edition.com, dorigati.it, aids.gov,

getdonedone.com, microsoft.com, keynesforkids.com, responsiveprocess.com, bigyouth.fr,
wentworthmansion.com, tuj.ac.jp, introducingthenovel.com, hsgac.senate.gov, atlantaballet.com

	1 Introduction
	2 Media Queries
	2.1 Media types
	2.1.1 Definition
	2.1.2 Types
	2.1.3 Miscast types

	2.2 Media queries
	2.2.1 Definition
	2.2.2 Viewport
	2.2.3 Syntax
	2.2.4 Example
	2.2.5 Why use media queries?
	2.2.6 Browser support

	3 Responsive Design Patterns of Common Website Areas
	3.1 Analysis Conditions
	3.2 Header
	3.3 Navigation
	3.4 Content
	3.5 Footer
	3.6 Break Points and Vertical Scroll Magnitude

	4 Responsive Media Elements
	4.1 Images
	4.1.1 Alternative Resources
	4.1.2 JavaScript Based Rollout
	4.1.3 Image Cropping

	4.2 Audio Elements
	4.3 Videos
	4.3.1 Responsive Videos
	4.3.2 Html5 video players

	5 Feature Specific Responsive Content
	5.1 Physical Input Devices
	5.1.1 Media Query: pointer
	5.1.2 Media Query: hover
	5.1.3 Zooming with Touch Gestures

	5.2 Alternative Properties of Display Screens
	5.2.1 Media Query: resolution and Display Resolution (Pixel Density)
	5.2.2 Media Queries: monochrome and luminosity

	5.3 Providing Context for Input Fields
	5.3.1 Custom Input Elements
	5.3.2 Adaptable Virtual Inputs
	5.3.3 Custom Browser Actions on Non-Input Elements

	5.4 HTML5 APIs
	5.4.1 WebAudio API
	5.4.2 Geolocation API
	5.4.3 Rotation API

	5.5 Detecting Available Features

	6 Conclusion
	Bibliography
	Appendix A: Pattern Analysis Data Tables

